Background: Named Entity Recognition (NER) and Normalisation (NEN) are core components of any text-mining system for biomedical texts. In a traditional concept-recognition pipeline, these tasks are combined in a serial way, which is inherently prone to error propagation from NER to NEN. We propose a parallel architecture, where both NER and NEN are modeled as a sequence-labeling task, operating directly on the source text.
View Article and Find Full Text PDFBackground: We present a text-mining tool for recognizing biomedical entities in scientific literature. OGER++ is a hybrid system for named entity recognition and concept recognition (linking), which combines a dictionary-based annotator with a corpus-based disambiguation component. The annotator uses an efficient look-up strategy combined with a normalization method for matching spelling variants.
View Article and Find Full Text PDFBackground: Animal health data recorded in free text, such as in necropsy reports, can have valuable information for national surveillance systems. However, these data are rarely utilized because the text format requires labor-intensive classification of records before they can be analyzed with using statistical or other software. In a previous study, we designed a text-mining tool to extract data from text in necropsy reports.
View Article and Find Full Text PDFJ Biomed Semantics
November 2017
Background: This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles.
Method: The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies.