Publications by authors named "Leny A Cavalcante"

Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture.

View Article and Find Full Text PDF

Olfactory ensheathing glia (OEG) are found in the olfactory mucosa, nerve and bulb, and provide in vivo ensheathment for the unmyelinated olfactory axons within the central and peripheral nervous system domains. OEG cells are able to migrate long distances within the neuropil of the central nervous system. Because gangliosides such as 9-O-acetyl GD3 have crucial regulatory roles in neuronal migration during development, we analyzed whether OEG in organotypical cultures are revealed by anti-9-O-acetyl GD3 and/or gangliosides are recognized by the A2B5 antibody (G-A2B5), and whether these gangliosides are involved in OEG migration.

View Article and Find Full Text PDF

Objectives: Erythropoietin may have neuroprotective potential after ischemia of the central nervous system. Here, we conducted a study to characterize the protective effects of erythropoietin on retinal ganglion cells and gliotic reactions in an experimentally induced oligemia model.

Methods: Rats were subjected to global oligemia by bilateral common carotid artery occlusion and then received either vehicle or erythropoietin via intravitreal injection after 48 h; they were euthanized one week after the injection.

View Article and Find Full Text PDF

The regenerative potential of the peripheral nervous system (PNS) is widely known, but functional recovery, particularly in humans, is seldom complete. Therefore, it is necessary to resort to strategies that induce or potentiate the PNS regeneration. Our main objective was to test the effectiveness of Olfactory Ensheathing Cells (OEC) transplantation into a biodegradable conduit as a therapeutic strategy to improve the repair outcome after nerve injury.

View Article and Find Full Text PDF

Ascidians are interesting neurobiological models because of their evolutionary position as a sister-group of vertebrates and the high regenerative capacity of their central nervous system (CNS). We investigated the degeneration and regeneration of the cerebral ganglion complex of the ascidian Styela plicata following injection of the niacinamide antagonist 3-acetylpyridine (3AP), described as targeting the CNS of several vertebrates. For the analysis and establishment of a new model in ascidians, the ganglion complex was dissected and prepared for transmission electron microscopy (TEM), routine light microscopy (LM), immunohistochemistry and Western blotting, 1 or 10 days after injection of 3AP.

View Article and Find Full Text PDF

We examined the effects of conditioned medium from olfactory ensheathing glia (OEGCM) on the differentiation of oligodendrocytes in mixed cultures of early postnatal hippocampi. Differentiation was judged from the numerical density (ND) of cells immunoreactive to 2'3' cyclic nucleotide 3'phosphodiesterase (CNPase) and O4 antibodies. NDs increased according to inverted-U dose-response curves, particularly for CNPase+ cells (9-fold at optimal dilution) and these changes were blocked by inhibitors of ERK1, p38-MAPK, and PI3K.

View Article and Find Full Text PDF

The neural system appears before the vascular system in the phylogenetic tree. During evolution, vascular system generation takes advantage of the pre-existing vascular endothelial growth factor (VEGF) in order to form its networks. Nevertheless, the role of VEGF in neuronal and glial cells is not yet completely understood.

View Article and Find Full Text PDF

Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner.

View Article and Find Full Text PDF

The use of bone marrow mononuclear cells (BMMCs) has been shown as a putative efficient therapy for stroke. However, the mechanisms of therapeutic action are not yet completely known. Mannose receptor (MR) is a subgroup of the C-type lectin receptor superfamily involved in innate immune response in several tissues.

View Article and Find Full Text PDF

Olfactory ensheathing cells (OECs) are a special glia that ensheath olfactory receptor axons that enter the brain via olfactory phila, thus, providing a potential route for access of pathogens. Streptococcus pneumoniae (Sp), that has a capsule rich in mannosyl residues, is the most common cause of rhinosinusitis that may evolve to meningitis. We have tested whether OECs in vitro express the mannose receptor (MR), and could internalize Sp via MR.

View Article and Find Full Text PDF

The mannose receptor (MR) is a transmembrane glycoprotein, postulated to be a link between innate and adaptive immunity. MR is expressed in several cell types but no information is available on that for Schwann cells (SC). We show that rodent SC in primary cultures take up the MR ligand mannosyl/bovine serum albumin-fluorescein isothiocyanate (man/BSA-FITC) in a highly specific manner and bind an antibody against the C-terminus of the murine macrophage MR (anti-cMR).

View Article and Find Full Text PDF

Complex carbohydrate structures are essential molecules of infectious microbes and host cells, and are involved in cell signaling associated with inflammatory and immune responses. The uptake of mannose-tailed glycans is usually carried out by macrophages, dendritic cells (DCs), and other professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation, and to promote T cell effector responses. Since Schwann cells (SCs) have been proposed as immunocompetent cells, we investigated whether a human cell line (ST88-14 cells) could bind mannosylated ligands in a specific manner.

View Article and Find Full Text PDF

The ongoing research on the roles of the gas nitric oxide (NO) in the nervous system has demonstrated its involvement in neurotransmission, synaptic plasticity, learning, excitotoxicity, neurodegenerative diseases and regulation of the cerebral blood flow. Thus, this molecule has been currently considered an important neuromodulator in CNS. Studies carried out in the visual system, particularly in the retinotectal component, have contributed to this current concept about NO.

View Article and Find Full Text PDF

We previously characterized some crustacean glial cells by markers such as 2',3'-cyclic nucleotide 3'-phosphodiesterase and glial fibrillary acidic protein. Here we use antibodies against glutamine synthetase full-length molecule (anti-GS/FL), a GS C-terminal peptide (anti-GS/20aa-C), and brain S100 (anti-S100), as well as the binding of the insect glia and rat astrocytic marker Datura stramonium lectin (DSL), in the optic lobe of the prawn Macrobrachium rosenbergii. All markers label the lamina ganglionaris cartridge region (lighter: anti-GS/FL; heavier: DSL).

View Article and Find Full Text PDF

Our knowledge of astroglia and their physiological and pathophysiological role(s) in the central nervous system (CNS) has grown during the past decade, revealing a complex picture. It is becoming increasingly clear that glia play a significant role in the homeostasis and function of the CNS and that neurons should no longer be considered the only cell type that responds, both rapidly and slowly, to electrochemical activity. We discuss recent advances in the field with an emphasis on the impact of hypoxia and ischemia on astrocytic metabolism and the functional relationship between glucose metabolism and gap junctions in astrocytes.

View Article and Find Full Text PDF

Leishmania amazonensis, an obligatory intracellular parasite, survives internalization by macrophages, but no information is available on the involvement of microglia. We have investigated microglia-protozoa interactions in mixed glial cultures infected with promastigote forms of L. amazonensis after lipopolysaccharide (LPS) or dexamethasone (DM) treatment.

View Article and Find Full Text PDF

Synemin (Syn) is an intermediate filament (IF) protein. To gain insight into a morphogenetic role of Syn, we have studied its expression patterns in the developing human retina and lens and compared it with those of other IF proteins. In addition, we have tested Syn expression in fetuses (23 and 28 weeks) affected by Walker-Warburg syndrome (WWS), Meckel syndrome, and trisomy 13.

View Article and Find Full Text PDF

Glial cells, in both vertebrate and invertebrate nervous systems, provide an essential environment for developmental, supportive, and physiological functions. However, information on glial cells themselves and on glial cell markers, with the exception of those of Drosophila and other insects, is not abundant in invertebrate organisms. A common ultrastructural feature of invertebrate nervous systems is that layers of glial cell cytoplasm-rich processes ensheath axons and neuronal and glial somata.

View Article and Find Full Text PDF

The olfactory bulb (OB) presents a unique pattern of permanent acquisition of primary afferents and interneurons, but not much detail is known about the differentiation of its oligodendroglial cells. We studied the expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a protein related to axonal ensheathment by myelinating cells. Expression of CNPase in OB follows a general caudorostral gradient, with the exception of the glomerular layer (GL).

View Article and Find Full Text PDF

Astrocytes located in two distinct regions of midbrain differ in their neuritic growth support abilities. Midbrain neurons cultured onto astrocyte monolayers from the lateral (L) region develop long and branched neurites while neurons cultured onto astrocyte monolayers from the medial (M) region develop short or no neurites. The extracellular matrix of these astrocytes has an important role in promoting or inhibiting the growth of these neurons.

View Article and Find Full Text PDF

Bilaterally symmetric organisms need to exchange information between the left and right sides of their bodies to integrate sensory input and to coordinate motor control. Thus, an important choice point for developing axons is the Central Nervous System (CNS) midline. Crossing of this choice point is influenced by highly conserved, soluble or membrane-bound molecules such as the L1 subfamily, laminin, netrins, slits, semaphorins, Eph-receptors and ephrins, etc.

View Article and Find Full Text PDF

The superficial layers of the rat superior colliculus (sSC) receive innervation from the retina and include nitrergic neurons. We have shown previously that in sSC, eye enucleation reduces NADPH diaphorase staining considerably in all but the most proximal dendrites of nitrergic neurons. We have used immunocytochemistry for neuronal nitric oxide synthase (nNOS) at light and electron microscopic levels and bilateral eye enucleation with varied survival times to determine the regulatory changes imposed by the direct and indirect loss of retinal input on apparent nNOS amount and subcellular distribution.

View Article and Find Full Text PDF