Publications by authors named "Lenthe J"

Background: We evaluated three-dimensional speckle tracking echocardiography (3DSTE) strain and cardiac magnetic resonance (CMR) with delayed contrast enhancement (DCE) for the prediction of cardiac events in left ventricular (LV) dysfunction.

Methods: CMR and 3DSTE in 75 patients with ischaemic and 38 with non-ischaemic LV dysfunction were analysed and temporally correlated to cardiac events during 41 ± 9 months of follow-up.

Results: Cardiac events occurred in 44 patients, more in patients with ischaemic LV dysfunction.

View Article and Find Full Text PDF

A quadratically convergent valence bond self-consistent field method is described where the simultaneous optimisation of orbitals and the coefficients of the configurations (VB structures) is based on a Newton-Raphson scheme. The applicability of the method is demonstrated in actual calculations. The convergence and efficiency are compared with the Super-CI method.

View Article and Find Full Text PDF

In this work, the complexation of the bapbpy ligand to zinc dichloride is described (bapbpy = 6,6′-bis(2-aminopyridyl)-2,2′-bipyridine). The water-soluble, colorless complex [Zn(bapbpy)Cl]Cl·2H2O (compound 2·H2O) was synthesized; its X-ray crystal structure shows a mononuclear, pentacoordinated geometry with one chloride ligand in apical position. Upon excitation of its lowest-energy absorption band (375 nm) compound 2 shows intense emission (Φ = 0.

View Article and Find Full Text PDF

Resonance energy is one of the criteria to measure aromaticity. The effect of the use of different orbital models is investigated in the calculated resonance energies of cyclic conjugated hydrocarbons within the framework of the ab initio Valence Bond Self-Consistent Field (VBSCF) method. The VB wave function for each system was constructed using a linear combination of the VB structures (spin functions), which closely resemble the Kekulé valence structures, and two types of orbitals, that is, strictly atomic (local) and delocalized atomic (delocal) p-orbitals, were used to describe the π-system.

View Article and Find Full Text PDF

The SO(2)-binding properties of a series of η(6),η(1)-NCN-pincer ruthenium platinum complexes (NCN = 2,6-bis[(dimethylamino)methyl]phenyl anion) have been studied by both UV-visible spectroscopy and theoretical calculations. When an electron-withdrawing [Ru(C(5)R(5))](+) fragment (R = H or Me) is η(6)-coordinated to the phenyl ring of the NCN-pincer platinum fragment (cf. [2](+) and [3](+), see Scheme 1), the characteristic orange coloration (pointing to η(1)- SO(2) binding to Pt) of a solution of the parent NCN-pincer platinum complex 1 in dichloromethane upon SO(2)-bubbling is not observed.

View Article and Find Full Text PDF

A new scheme, called "list of nonredundant bonds", is presented to record the number of bonds and their positions for the atoms involved in Kekulé valence structures of (poly)cyclic conjugated systems. Based on this scheme, a recursive algorithm for generating Kekulé valence structures has been developed and implemented. The method is general and applicable for all kinds of (poly)cyclic conjugated systems including fullerenes.

View Article and Find Full Text PDF

The molecular geometry and the normal modes properties of coronene are investigated by means of DFT(B3LYP) and restricted/Hartree-Fock calculations utilizing basis sets of triple zeta+polarization quality. The interpretation of the infrared and Raman spectra of coronene, especially in solid state, is critically revised. The phantom bands in the solid state, previously not understood, are readily assigned after considering a minute out-of-plane molecular distortion from D(6h) to C(2h).

View Article and Find Full Text PDF

The resonating block localize wave function (RBLW) method is introduced, a resonating modification of the block localized wave functions introduced by Mo et al. [Mo, Y.; Peyerimhoff, S.

View Article and Find Full Text PDF

Calculations on members of the oligo(cyclohexylidene) series [(n), n = 1-5)] and related tetrahydro-4H-thiopyran end-capped analogues [(n), n = 1-4)] show a strong through-bond coupling between their pi bonds and sulfur lone pairs (Lp(pi)S). This coupling is mediated by an interaction between the H(ax)-C-C-H(ax) structural sub-units and the pi bonds connecting the cyclohexyl moieties. A comparison of the length dependency of the through-bond coupling via an oligo(cyclohexylidene) and an alkane bridge [divinyl alkanes (n)] shows that oligo(cyclohexylidenes) are more efficient in mediating through-bond couplings over large distances.

View Article and Find Full Text PDF

Valence bond wavefunctions are naturally geared to the chemist's idea of chemical bonding. In a structure one may distinguish different electron pair bonds and possible radical character. A structure may correspond to a covalent bond, where all electrons are equally divided over the atoms, or may describe an excess charge on a discrete part of the molecule, which indicates ionic bond character.

View Article and Find Full Text PDF

We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedure is less obvious. For instance, there is no need to converge the corresponding closed-shell Hartree-Fock calculation when dealing with an open-shell species.

View Article and Find Full Text PDF

Magnesium hydride is cheap and contains 7.7 wt % hydrogen, making it one of the most attractive hydrogen storage materials. However, thermodynamics dictate that hydrogen desorption from bulk magnesium hydride only takes place at or above 300 degrees C, which is a major impediment for practical application.

View Article and Find Full Text PDF

We present the ab initio potential-energy surfaces of the NH-NH complex that correlate with two NH molecules in their 3sigma- electronic ground state. Three distinct potential-energy surfaces, split by exchange interactions, correspond to the coupling of the S(A) = 1 and S(B) = 1 electronic spins of the monomers to dimer states with S = 0, 1, and 2. Exploratory calculations on the quintet (S = 2), triplet (S = 1), and singlet (S = 0) states and their exchange splittings were performed with the valence bond self-consistent-field method that explicitly accounts for the nonorthogonality of the orbitals on different monomers.

View Article and Find Full Text PDF

Valence bond (VB) theory and ring-current maps have been used to study the electronic structure of inorganic benzene analogues X(6)H(6) (X = C (1), Si (2)), X(6) (X = N (3), P (4)), X(3)Y(3)H(6) (X,Y = B,N (5), B,P (6), Al,N (7), Al,P (8)), and B(3)Y(3)H(3) (Y = O (9), S (10)). It is shown that the homonuclear compounds possess benzene-like character, with resonance between two Kekulé-like structures and induced diatropic ring currents. Heteronuclear compounds typically show localization of the lone pairs on the electronegative atoms; Kekulé-like structures do not contribute.

View Article and Find Full Text PDF

To probe the effect of external cyclopenta-fusion on a naphthalene core, ab initio valence bond (VB) calculations have been performed, using strictly atomic benzene p-orbitals and p-orbitals that are allowed to delocalize, on naphthalene (1), acenaphthylene (2), pyracylene (3), cyclopenta[b,c]acenaphthylene (4), fluoranthene (5), and cyclopenta[c,d]fluoranthene (6). For the related compounds 1-4 and 5,6 the total resonance energies (according to Pauling's definition) are similar. Partitioning of the total resonance energy in contributions from the possible 4n + 2 and 4n pi-electron conjugated circuits shows that only the 6pi-electron conjugated circuits (benzene-like) contribute to the resonance energy.

View Article and Find Full Text PDF

Why are some (4n+2)pi systems aromatic, and some not? The ipsocentric approach to the calculation of the current density induced in a molecule by an external magnetic field predicts a four-electron diatropic (aromatic) ring current for (4n+2)pi carbocycles and a two-electron paratropic (antiaromatic) current for (4n)pi carbocycles. With the inclusion of an electronegativity parameter, an ipsocentric frontier-orbital model also predicts the transition from delocalised currents in carbocycles to nitrogen-localised currents in alternating azabora-heterocycles, which rationalises the differences in (magnetic) aromaticity between these isoelectronic pi-conjugated systems. Ab initio valence-bond calculations confirm the localisation predicted by the naive model, and coupled-Hartree-Fock calculations give current-density maps that exhibit the predicted delocalised-to-localised/carbocycle-heterocycle transition.

View Article and Find Full Text PDF

We have developed a computational approach in which an inhibitor's strength is determined from its interaction energy with a limited set of amino acid residues of the inhibited protein. We applied this method to HIV protease. The method uses a consensus structure built from X-ray crystallographic data.

View Article and Find Full Text PDF

We present a de novo design program called SYNOPSIS, that includes a synthesis route for each generated molecule. SYNOPSIS designs novel molecules by starting from a database of available molecules and simulating organic synthesis steps. This way of generating molecules imposes synthetic accessibility on the molecules.

View Article and Find Full Text PDF

A series of fluorous derivatives of group 10 complexes MCl(2)(dppe) and [M(dppe)(2)](BF(4))(2) (M = Ni, Pd or Pt; dppe = 1,2-bis(diphenylphosphino)ethane) and cis-PtCl(2)(PPh(3))(2) was synthesized. The influence of para-(1H,1H,2H,2H-perfluoroalkyl)dimethylsilyl-functionalization of the phosphine phenyl groups of these complexes, as studied by NMR spectroscopy, cyclovoltammetry (CV), XPS analyses, as well as DFT calculations, points to a weak steric and no significant inductive electronic effect. The steric effect is most pronounced for M = Ni and leads in the case of NiCl(2)(1c) (3c) and [Ni(1c)(2)](BF(4))(2) (7c) (1c = [CH(2)P[C(6)H(4)(SiMe(2)CH(2)CH(2)C(6)F(13))-4](2)](2)) to a tetrahedral distortion from the expected square planar geometry.

View Article and Find Full Text PDF

The relative aromaticities of the three singlet benzyne isomers, 1,2-, 1,3-, and 1,4-didehydrobenzenes have been evaluated with a series of aromaticity indicators, including magnetic susceptibility anisotropies and exaltations, nucleus-independent chemical shifts (NICS), and aromatic stabilization energies (all evaluated at the DFT level), as well as valence-bond Pauling resonance energies. Most of the criteria point to the o-benzyne View Article and Find Full Text PDF

The aromaticity of all possible cyclopenta-fused pyrene congeners has been investigated at various levels of theory. On the basis of the calculated resonance energies and magnetic properties (delta(1)H data, magnetic susceptibility anisotropies, and NICS values), the overall aromaticity of these compounds is found to decrease gradually with increasing number of externally fused five-membered rings. The relatively small differences (<5 kcal/mol) in thermodynamic stability of the isomeric dicyclopentapyrenes (E(tot): dicyclopenta[cd,fg]- > dicyclopenta[cd,jk]- > dicyclopenta[cd,mn]pyrene), which differs from the aromaticity order based on the magnetic criteria (dicyclopenta[cd,mn]- > dicyclopenta[cd,fg]- > dicyclopenta[cd,jk]pyrene), is shown by model calculations to be dominated by sigma-strain imposed on the pyrene skeleton by sequential cyclopenta-fusion.

View Article and Find Full Text PDF

A series of complexes ML2(x+) (M = Mn-Zn, L = 2,6-bis(iminomethyl)pyridine) was investigated by theoretical methods. Electron transfer from the metal "t(2g)" orbitals to the ligand pi orbitals is reflected in the elongation of ligand C-N bonds and shortening of the C(py)-C(imine) bonds. Using zinc complexes as references, these deformations could be used to quantify the number of electrons transferred.

View Article and Find Full Text PDF