Massive sampling with AlphaFold2 improves protein-protein complex predictions. This has been shown during the last CASP15-CAPRI blind prediction round by the AFsample tool. However, more difficult targets including antibody-antigen binding remain challenging.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2024
Worldwide, invasive candidiasis are a burden for the health system due to difficulties to manage patients, to the increasing of the resistance of the current therapeutics and the emergence of naturally resistant species of . In this context, the development of innovative antifungal drugs is urgently needed. During invasive candidiasis, yeast is submitted to many stresses (oxidative, thermic, osmotic) in the human host.
View Article and Find Full Text PDFMassive sampling in AlphaFold enables access to increased structural diversity. In combination with its efficient confidence ranking, this unlocks elevated modeling capabilities for monomeric structures and foremost for protein assemblies. However, the approach struggles with GPU cost and data storage.
View Article and Find Full Text PDFProtein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches.
View Article and Find Full Text PDFWe present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target.
View Article and Find Full Text PDFTopoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, . The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC (0.
View Article and Find Full Text PDFProcesses affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates.
View Article and Find Full Text PDFTMEM165 is a Golgi protein playing a crucial role in Mn transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R mutation, are far away from these motifs in the sequence.
View Article and Find Full Text PDFIntroduction: Following the integration of cyanobacteria into the eukaryotic cells, many genes were transferred from the plastid to the nucleus. As a result, plastid complexes are encoded both by plastid and nuclear genes. Tight co-adaptation is required between these genes as plastid and nuclear genomes differ in several characteristics, such as mutation rate and inheritance patterns.
View Article and Find Full Text PDFWhile most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E.
View Article and Find Full Text PDFMutation is the source of all heritable diversity, the essential material of evolution and breeding. While mutation rates are often regarded as constant, variability in mutation rates has been observed at nearly every level-varying across mutation types, genome locations, gene functions, epigenomic contexts, environmental conditions, genotypes, and species. This mutation rate variation arises from differential rates of DNA damage, repair, and transposable element activation and insertion that together produce what is measured by DNA mutation rates.
View Article and Find Full Text PDFThe Sd carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail.
View Article and Find Full Text PDFAdvances in a scientific discipline are often measured by small, incremental steps. In this review, we report on two intertwined disciplines in the protein structure prediction field, modeling of single chains and modeling of complexes, that have over decades emulated this pattern, as monitored by the community-wide blind prediction experiments CASP and CAPRI. However, over the past few years, dramatic advances were observed for the accurate prediction of single protein chains, driven by a surge of deep learning methodologies entering the prediction field.
View Article and Find Full Text PDFThe rise of precision medicine has led to an unprecedented focus on human biological material in biomedical research. In addition, rapid advances in stem cell technology, regenerative medicine and synthetic biology are leading to more complex human tissue structures and new applications with tremendous potential for medicine. While promising, these developments also raise several ethical and practical challenges which have been the subject of extensive academic debate.
View Article and Find Full Text PDFFlaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms.
View Article and Find Full Text PDFEmerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments.
View Article and Find Full Text PDFFront Mol Biosci
August 2021
DNA aptamers are versatile molecular species obtained by the folding of short single-stranded nucleotide sequences, with highly specific recognition capabilities against proteins. Here we test the ability of DNA aptamers to interact with the spike (S-)protein of the SARS-CoV-2 viral capsid. The S-protein, a trimer made up of several subdomains, develops the crucial function of recognizing the ACE2 receptors on the surface of human cells, and subsequent fusioning of the virus membrane with the host cell membrane.
View Article and Find Full Text PDFWe present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers).
View Article and Find Full Text PDFResidue interaction networks (RINs) describe a protein structure as a network of interacting residues. Central nodes in these networks, identified by centrality analyses, highlight those residues that play a role in the structure and function of the protein. However, little is known about the capability of such analyses to identify residues involved in the formation of macromolecular complexes.
View Article and Find Full Text PDFBackground: -GlcNAcylation is an essential post-translational modification (PTM) in mammalian cells. It consists in the addition of a -acetylglucosamine (GlcNAc) residue onto serines or threonines by an -GlcNAc transferase (OGT). Inhibition of OGT is lethal, and misregulation of this PTM can lead to diverse pathologies including diabetes, Alzheimer's disease and cancers.
View Article and Find Full Text PDF