The levels of the SELENOF selenoprotein are dramatically reduced in prostate cancer compared to adjacent benign tissue and reducing SELENOF in prostate epithelial cells results in the acquisition of features of the transformed phenotype. It was hypothesized that the aberrant increase in the eiF4a3 translation factor, which has an established role in RNA splicing and the regulation of selenoprotein translation, contributes to the lower levels of SELENOF. Using the available databases, eIF4a3 messenger RNA (mRNA) levels are elevated in prostate cancer compared to normal tissue as is the hypomethylation of the corresponding gene.
View Article and Find Full Text PDFSickle cell disease (SCD) is caused by a mutation of the β-globin gene that results in the production of hemoglobin S (HbS). People with SCD experience anemia, severe acute pain episodes, persistent chronic pain, multiorgan damage, and a reduced life span. The pathophysiology of SCD caused by the polymerization of HbS on deoxygenation results in red cell deformability and the generation of reactive oxygen species (ROS).
View Article and Find Full Text PDFEpidemiological evidence has indicated an inverse association between selenium status and various types of cancer, including breast cancer. Selenoproteins are the primary mediators of selenium effects in human health. We have previously reported loss of heterozygosity in breast tumor samples of the gene for one of the selenoproteins, SELENOF.
View Article and Find Full Text PDFSELENOF is a member of the class of selenoproteins in which the amino acid selenocysteine is co-translationally inserted into the elongating peptide in response to an in-frame UGA codon located in the 3'-untranslated (3'-UTR) region of the SELENOF mRNA. Polymorphisms in the 3'-UTR are associated with an increased risk of dying from prostate cancer and these variations are functional and 10 times more frequent in the genomes of African American men. SELENOF is dramatically reduced in prostate cancer compared to benign adjacent regions.
View Article and Find Full Text PDFSince December 2019, SARS-CoV-2 has spread extensively throughout the world, with more than 117 million reported cases and 2.6 million deaths (Johns Hopkins coronavirus resource center, https://coronavirus.jhu.
View Article and Find Full Text PDFSARS-CoV-2 has infected more than 30 million persons throughout the world. A subset of patients suffer serious consequences that require hospitalization and ventilator support. Current tests for SARS-CoV-2 generate qualitative results and are vital to make a diagnosis of the infection.
View Article and Find Full Text PDFObjective: The broad goal of the research described in this study was to investigate the contributions of selenium-binding protein 1 (SBP1) loss in prostate cancer development and outcome.
Methods: SBP1 levels were altered in prostate cancer cell lines and the consequences on oxygen consumption, expression of proteins associated with energy metabolism, and cellular transformation and migration were investigated. The effects of exposing cells to the SBP1 reaction products, H O and H S were also assessed.
Glutathione peroxidase 1 (GPX1) is an extensively studied selenium-dependent protein that reduces hydrogen and lipid peroxides to water. Because of its antioxidant function and its responsiveness to dietary intakes of selenium, an essential trace element whose levels are inversely associated with prostate cancer risk, GPX1 levels were assessed in a prostate cancer tissue microarray, comparing cases of recurrent prostate cancer following prostatectomy to non-recurrent controls. While GPX1 is generally considered as a protein that resides in both the cytoplasm and mitochondria, we detected strong nuclear staining by immunofluorescence using GPX1-specific antibodies.
View Article and Find Full Text PDF