We present the experimental realization of a continuous dynamical decoupling scheme which suppresses leading frequency shifts in a multi-ion frequency reference based on ^{40}Ca^{+}. By near-resonant magnetic coupling of the ^{2}S_{1/2} and ^{2}D_{5/2} Zeeman sublevels using radio-frequency dressing fields, engineered transitions with reduced sensitivity to magnetic-field fluctuations are obtained. A second stage detuned dressing field reduces the influence of amplitude noise in the first stage driving fields and decreases 2nd-rank tensor shifts, such as the electric quadrupole shift.
View Article and Find Full Text PDFOptical resonators are used for the realisation of ultra-stable frequency lasers. The use of high reflectivity multi-band coatings allows the frequency locking of several lasers of different wavelengths to a single cavity. While the noise processes for single wavelength cavities are well known, the correlation caused by multi-stack coatings has as yet not been analysed experimentally.
View Article and Find Full Text PDF