Background: Neutrophil-derived heparin-binding protein (HBP) plays a role in the pathophysiology of impaired endothelial dysfunction during inflammation. HBP has been suggested as a predictor of organ dysfunction and disease progression in sepsis. We investigated the effects of heparins on plasma concentrations of HBP in patients undergoing surgery.
View Article and Find Full Text PDFAcute lung injury (ALI) and respiratory distress can develop as a consequence of sepsis with pathogens such as group A (GAS). In the pathogenesis of sepsis-associated ALI, endothelial barrier disruption brought on by phagocyte activation is considered a causative factor. Here, we find that sevuparin, a heparinoid with low anticoagulant activity, prevents neutrophil-induced lung plasma leakage in a murine model of systemic inflammation evoked by heat-killed GAS (hkGAS).
View Article and Find Full Text PDFNeutrophil recruitment and plasma exudation are key elements in the immune response to injury or infection. Activated neutrophils stimulate opening of the endothelial barrier; however, the underlying mechanisms have remained largely unknown. In this study, we identified a pivotal role of the proinflammatory kallikrein-kinin system and consequent formation of bradykinin in neutrophil-evoked vascular leak.
View Article and Find Full Text PDFMacrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages.
View Article and Find Full Text PDFCysteinyl leukotrienes (cys-LTs) are lipid mediators of inflammation. The enzyme catalyzing synthesis of cys-LTs, leukotriene C4 synthase (LTC4S), is considered an important drug target. Here we report the synthesis and characterization of three tandem benzophenone amino pyridines as inhibitors of LTC4S in vitro and in vivo.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2015
Objective: Loss of endothelial barrier function in arterial blood vessels is characteristic of vascular pathologies, including atherosclerosis. Here, we present a near-infrared fluorescence (NIRF) imaging methodology for quantifying endothelial permeability and macromolecular uptake in large arteries in the mouse and evaluate its applicability for studying mechanisms of vascular inflammation.
Approach And Results: To validate the NIRF methodology, macrovascular inflammation was induced in C57bl/6 mice by local tumor necrosis factor-α stimulation of the carotid artery or in apolipoprotein E-deficient mice by Western diet for 4 weeks.
Antimicrobial peptides (AMPs) are a key component of the immune system and are expressed by a large variety of organisms. AMPs are capable of eliminating a broad range of micro-organisms, illustrated by murine models where lack of AMP expression resulted in enhanced susceptibility to infection. Despite the importance of AMPs in immune defences, it is not clear whether a change in AMP expression is pathogen-specific or reflects a general response to groups of pathogens.
View Article and Find Full Text PDFLeukocytes are activated systemically and their numbers increase soon after a burn followed by a rapid decline to low normal or subnormal levels, possibly by increased extravasation. Experimental data support that an important target for such extravasation is the lungs and that leukocytes when they adhere to endothelial cells cause an increase in vascular permeability. The authors investigated a possible relation between early increased pulmonary vascular permeability or a decreased PaO2:FiO2 ratio and the dynamic change in concentration of blood leukocytes after a burn.
View Article and Find Full Text PDFIn humans, LL-37 and eicosanoids are important mediators of inflammation and immune responses. Here we report that LL-37 promotes leukotriene B4 (LTB4) and thromboxane A2 (TXA2) generation by human monocyte-derived macrophages (HMDMs). LL-37 evokes calcium mobilization apparently via the P2X7 receptor (P2X7R), activation of ERK1/2 and p38 MAPKs, as well as cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase in HMDMs, leading to an early (1 h) release of LTB4.
View Article and Find Full Text PDFA promising strategy in the fight against multidrug-resistant pathogens is the induction of endogenous AMPs, with compounds such as VitD₃ and PBA. These compounds display an array of immunomodulatory effects that remain to be investigated in further detail to establish their role in the clearance of infection and possible modulation of AMP expression. Here, we have investigated the effects of VitD₃ and PBA on human monocyte-DC differentiation and found that VitD₃ and PBA promote the development of a stretched CD14⁺/CD1a⁻ DC subset.
View Article and Find Full Text PDFLL-37/hCAP-18 is the only human member of the cathelicidin family and plays an important role in killing various pathogens, as well as in immune modulation. In this study, we investigated the effect of LL-37 on bacterial phagocytosis by macrophages and demonstrate that LL-37 enhances phagocytosis of IgG-opsonized Gram-negative and Gram-positive bacteria in a dose- and time-dependent manner by dTHP-1 cells. In addition, LL-37 enhanced phagocytosis of nonopsonized Escherichia coli by human macrophages.
View Article and Find Full Text PDFObjective: LL-37, the unique cathelicidin expressed in humans, in addition to acting as an endogenous antibiotic, is an important cell-signaling molecule upregulated in ovarian, breast, and lung tumors. However, the role of LL-37 in tumor microenvironment and its specific actions on the endothelial compartment remain elusive. Prostanoids are key regulators of inflammation, and cyclooxygenases (COXs) display proangiogenic activity in vitro and in vivo, mediated principally through prostaglandin E2 (PGE2).
View Article and Find Full Text PDFBackground: Heparin Binding Protein (HBP) is released to blood circulation from activated neutrophils in bacterial infections. It is a potential inducer of vascular leakage and precludes the development of septic shock. Filgrastim induces the production of new neutrophils and modulates their bacterial-killing activity.
View Article and Find Full Text PDFRationale: The leukocyte response in acute inflammation is characterized by an initial recruitment of neutrophils preceding a second wave of monocytes. Neutrophil-derived granule proteins were suggested to hold an important role in this cellular switch. The exact mechanisms by which neutrophils mediate these processes are only partially understood.
View Article and Find Full Text PDFAs traditional antibiotics gradually become inefficient, there is a high demand for development of anti-infectives with a mechanism of action that is different from existing antibiotics. Current antibiotics target the pathogen directly, thereby contributing to the selection of multidrug-resistant bacterial strains. AMPs, such as the human cathelicidin LL-37, are small cationic peptides that are part of host defense.
View Article and Find Full Text PDFBackground: Brain edema as a result of secondary injury following traumatic brain injury (TBI) is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear.
Methods: In this study we used controlled cortical impact (CCI) as a model for TBI and investigated the role of neutrophils in the response to injury.
Background: Patients with primary immunodeficiency (PID) often suffer from frequent respiratory tract infections. Despite standard treatment with IgG-substitution and antibiotics many patients do not improve significantly. Therefore, we hypothesized that additional immune deficits may be present among these patients.
View Article and Find Full Text PDFBeneficial anti-inflammatory properties have been ascribed to volatile anesthetics in septic conditions, but no studies have compared anesthesia to the conscious state in a large-animal model. The aim of this study was to investigate the effect of isoflurane anesthesia on cardiovascular and respiratory function, leukocyte activation, and lung damage in a model of endotoxemia in sheep. Conscious (n = 6) and anesthetized (n = 6) sheep were made endotoxemic by continuous infusion of LPS for 48 h.
View Article and Find Full Text PDFNeutrophils, monocytes and macrophages are closely related phagocytic cells that cooperate during the onset, progression and resolution of inflammation. This Review highlights the mechanisms involved in the intimate partnership of phagocytes during each progressive phase of the inflammatory response. We describe how tissue-resident macrophages recognize tissue damage to promote the recruitment of neutrophils and the mechanisms by which infiltrating neutrophils can then promote monocyte recruitment.
View Article and Find Full Text PDFFor leukocytes to penetrate the vessel wall, they need to interact sequentially with the endothelial lining and the perivascular BM. The matrix protein laminin-411 is a major constituent of the vascular BM. The laminin alpha4 chain is a component of laminin-411 and has structural and signaling functions.
View Article and Find Full Text PDFInflammation and activation of immune cells are key mechanisms in the development of atherosclerosis. Previous data indicate important roles for monocytes and T-lymphocytes in lesions. However, recent data suggest that neutrophils also may be of importance in atherogenesis.
View Article and Find Full Text PDFPolymorphonuclear leukocytes (PMNs) release the contents of granules during their migration to inflammatory sites. On liberation from the first leukocyte to enter injured tissue, the granule proteins play a central role in the early inflammatory response. In particular, mononuclear phagocytes interact intimately with PMNs and their secretion products.
View Article and Find Full Text PDFExtravasation of polymorphonuclear leukocytes (PMNs) to the site of inflammation precedes a second wave of emigrating monocytes. That these events are causally connected has been established a long time ago. However, we are now just beginning to understand the molecular mechanisms underlying this cellular switch, which has become even more complex considering the emergence of monocyte subsets, which are affected differently by signals generated from PMNs.
View Article and Find Full Text PDFIncreased vascular permeability and oedema formation constitute a major clinical challenge following burns. Several clinical studies show that leukocytes are systemically activated following burns. Neutrophils have the capability to increase vascular permeability via mechanisms thought to involve the release of heparin binding protein (HBP).
View Article and Find Full Text PDFJunctional adhesion molecule A (JAM-A) is a transmembrane adhesive glycoprotein that participates in the organization of endothelial tight junctions and contributes to leukocyte transendothelial migration. We demonstrate here that cultured endothelial cells not only express a cellular 43-kDa variant of JAM-A but also release considerable amounts of a 33-kDa soluble JAM-A variant. This release is enhanced by treatment with proinflammatory cytokines and is associated with the down-regulation of surface JAM-A.
View Article and Find Full Text PDF