Airway resistance measurements using oscillometry provide a potential alternative to spirometry in assessing airway obstruction and dynamics due to measurements taken during tidal breathing. Oscillometry typically requires participants to form a tight seal around a mouthpiece that can prove challenging for some people. To address this challenge, we conducted a prospective study to evaluate the effect of different interfaces like mouthpiece, mouth mask, and nasal mask on respiratory impedance results from oscillometry in a cohort of healthy adults.
View Article and Find Full Text PDFBackground: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2.
View Article and Find Full Text PDFAging is associated with a gradual loss of lung function due to increased cellular senescence, decreased regenerative capacity, and impaired innate host defense. One important aspect of innate airway epithelial host defense to nonmicrobial triggers is the secretion of alarmins such as IL-33 and activation of type 2 inflammation, which were previously found to depend on activation of the NADPH oxidase (NOX) homolog DUOX1, and redox-dependent signaling pathways that promote alarmin secretion. Here, we demonstrate that normal aging of C57BL/6J mice resulted in markedly decreased lung innate epithelial type 2 responses to exogenous triggers such as the airborne allergen , which was associated with marked downregulation of DUOX1, as well as DUOX1-mediated redox-dependent signaling.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2021
Airway oscillometry has become the de facto standard for quality assessment of lung physiology in laboratory animals and has demonstrated its usefulness in understanding diseases of small airways. Nowadays, it is seeing extensive use in daily clinical practice and research; however, a question that remains unanswered is how well physiological findings in animals and humans correlate? Methodological and device differences are obvious between animal and human studies. However, all devices deliver an oscillated airflow test signal and output respiratory impedance.
View Article and Find Full Text PDFIn the community setting, assessing spirometry in school-aged children is often limited by the unavailability of respirology technicians at the point-of-care. We developed a new technique called the Rapid Expiratory Occlusion Method (REOM) that measures respiratory resistance during normal breathing, without specialized training. The aim was to examine the concordance between respiratory resistance measured with the REOM and respiratory resistance measured by oscillometry on the tremoflo.
View Article and Find Full Text PDFClin Physiol Funct Imaging
September 2020
Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma.
View Article and Find Full Text PDFThe stress-induced kinase, c-Jun-N-terminal kinase 1 (JNK1) has previously been implicated in the pathogenesis of lung fibrosis. However, the exact cell type(s) wherein JNK1 exerts its pro-fibrotic role(s) remained enigmatic. Herein we demonstrate prominent activation of JNK in bronchial epithelia using the mouse models of bleomycin- or AdTGFβ1-induced fibrosis.
View Article and Find Full Text PDFImpedance, or oscillometry, measurements of the respiratory system can generate information about the function of the respiratory system not possible with traditional spirometry. There are currently several instruments on the market using different perturbations. We have compared a new respiratory oscillometry instrument, the tremoflo, with Impulse Oscillometry (IOS).
View Article and Find Full Text PDFIntroduction: The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa.
Objectives: To determine a discriminatory core of molecules in the "breath-print" of mice during a lung infection with four strains of P.
In the present research, the potential of breath analysis by comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) was investigated for the discrimination between healthy and infected mice. A pilot study employing a total of 16 animals was used to develop a method for breath analysis in a murine model for studying Mycobacterium tuberculosis complex (MTBC) using the M. bovis bacillus Calmette-Guérin.
View Article and Find Full Text PDFBackground: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma.
Objectives: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma.
The use of computed tomography (CT scans) has increased dramatically in recent decades, raising questions about the long-term safety of CT-emitted x-rays especially in infants who are more sensitive to radiation-induced effects. Cancer risk estimates for CT scans typically are extrapolated from models; therefore, new approaches measuring actual DNA damage are needed for improved estimations. Hence, changes in a dosimeter of DNA double-strand breaks, micronucleated reticulocytes (MN-RETs) measured by flow cytometry, were investigated in mice and infants exposed to CT scans.
View Article and Find Full Text PDFiNKT cells and mast cells have both been implicated in the syndrome of allergic asthma through their activation-induced release of Th2 type cytokines and secretion of histamine and other mediators, respectively, which can promote airways hyperresponsiveness (AHR) to agents such as methacholine. However, a mechanistic link between iNKT cells and mast cell recruitment or activation has never been explored. Our objective was to determine whether iNKT cells are necessary for the recruitment of mast cells and if iNKT cells can influence the acute allergen induced bronchoconstriction (AIB) caused by mast cell mediator release.
View Article and Find Full Text PDFBackground: The relationship between lung and joint inflammation in rheumatoid arthritis is poorly understood. Lung inflammation with resultant protein citrullination may trigger anti-citrullinated protein antibodies, inflammation, and arthritis. Alternatively, lung and joint inflammation may be two manifestations of a single underlying pathology.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2016
Protein S-glutathionylation (PSSG) is an oxidant-induced post-translational modification of protein cysteines that impacts structure and function. The oxidoreductase glutaredoxin-1 (Glrx1) under physiological conditions catalyzes deglutathionylation and restores the protein thiol group. The involvement of Glrx1/PSSG in allergic inflammation induced by asthma-relevant allergens remains unknown.
View Article and Find Full Text PDFS-glutathionylation has emerged as an oxidant-induced post-translational modification of protein cysteines that affects structure and function. The oxidoreductase glutaredoxin-1 (Glrx1), under physiological conditions, catalyzes deglutathionylation and restores the protein thiol group. The involvement of Grx1/S-glutathionylation in allergic inflammation induced by asthma-relevant allergens remains unknown.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2016
We have previously advanced the hypothesis that the allergic inflammatory response in the lungs occurs as a self-limited sequence of events that begins with the onset of inflammation and then resolves back to baseline over a predetermined time course (Pothen JJ, Poynter ME, Bates JH. J Immunol 190: 3510-3516, 2013). In the present study we tested a key prediction of this hypothesis, which is that the instigation of the allergic inflammatory response should be accompanied by a later refractory period during which the response cannot be reinitiated.
View Article and Find Full Text PDFInvariant Natural Killer T (iNKT) cells are a T cell subset expressing an invariant T Cell Receptor (TCR) that recognizes glycolipid antigens rather than peptides. The cells have both innate-like rapid cytokine release, and adaptive-like thymic positive selection. iNKT cell activation has been implicated in the pathogenesis of allergic asthma and inflammatory diseases, while reduced iNKT cell activation promotes infectious disease, cancer and certain autoimmune diseases such as Type 1 diabetes (T1D).
View Article and Find Full Text PDFMechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (VT) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-VT ventilation.
View Article and Find Full Text PDFChronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2014
Lung mastocytosis and antigen-induced bronchoconstriction are common features in allergic asthmatics. It is therefore important that animal models of asthma show similar features of mast cell inflammation and reactivity to inhaled allergen. We hypothesized that house dust mite (HDM) would induce mastocytosis in the lung and that inhalation of HDM would trigger bronchoconstriction.
View Article and Find Full Text PDFNF-κB activation within the epithelium has been implicated in the pathogenesis of asthma, yet the exact role of epithelial NF-κB in allergen-induced inflammation and airway remodeling remains unclear. In the current study, we used an intranasal house dust mite (HDM) extract exposure regimen time course in BALB/c mice to evaluate inflammation, NF-κB activation, airway hyperresponsiveness (AHR), and airway remodeling. We used CC10-IκBαSR transgenic mice to evaluate the functional importance of epithelial NF-κB in response to HDM.
View Article and Find Full Text PDFSevere, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes.
View Article and Find Full Text PDFJ Breath Res
September 2013
Before breath-based diagnostics for lung infections can be implemented in the clinic, it is necessary to understand how the breath volatiles change during the course of infection, and ideally, to identify a core set of breath markers that can be used to diagnose the pathogen at any point during the infection. In the study presented here, we use secondary electrospray ionization-mass spectrometry (SESI-MS) to characterize the breathprint of Pseudomonas aeruginosa and Staphylococcus aureus lung infections in a murine model over a period of 120 h, with a total of 86 mice in the study. Using partial least squares-discriminant analysis (PLS-DA) to evaluate the time-course data, we were able to show that SESI-MS breathprinting can be used to robustly classify acute P.
View Article and Find Full Text PDF