Publications by authors named "Lennart Brodin"

Neuropeptides are widely used as neurotransmitters in vertebrates and invertebrates. In vertebrates, a detailed understanding of their functions as transmitters has been hampered by the complexity of the nervous system. The marine mollusk , with a simpler nervous system and many large, identified neurons, presents several advantages for addressing this question and has been used to examine the roles of tens of peptides in behavior.

View Article and Find Full Text PDF

The protein α-synuclein, which is well-known for its links to Parkinson's Disease, is associated with synaptic vesicles (SVs) in nerve terminals. Despite intensive studies, its precise physiological function remains elusive. Accumulating evidence indicates that liquid-liquid phase separation takes part in the assembly and/or maintenance of different synaptic compartments.

View Article and Find Full Text PDF

Liquid-liquid phase separation is an increasingly recognized mechanism for compartmentalization in cells. Recent in vitro studies suggest that this organizational principle may apply to synaptic vesicle clusters. Here we test this possibility by performing microinjections at the living lamprey giant reticulospinal synapse.

View Article and Find Full Text PDF

The retromer complex mediates export of select transmembrane proteins from endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Dysfunction of retromer has been linked with slowly progressing neurodegenerative disorders, including Alzheimer's and Parkinson's disease (AD and PD). As these disorders affect synapses it is of key importance to clarify the function of retromer-dependent protein trafficking pathways in pre- and postsynaptic compartments.

View Article and Find Full Text PDF

Background: Sorting nexins (SNXs) have diverse functions in protein sorting and membrane trafficking. Recently, single-nucleotide polymorphisms in SNX3 were found to be associated with Alzheimer disease. However, it remains unknown whether SNX3 participates in amyloid (A)β peptide production.

View Article and Find Full Text PDF

Abnormal production of amyloid-β peptides (Aβ) by proteolytic processing of amyloid precursor protein (APP) is thought to be central to the pathogenesis of Alzheimer's disease (AD). Although many efforts have been made to investigate mechanisms that regulate APP processing, many details remain incompletely understood. Sorting nexins (SNXs) are a family of proteins which are involved in many intracellular trafficking events.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by aggregation of toxic forms of amyloid β peptide (Aβ). Treatment strategies have largely been focused on inhibiting the enzymes (β- and γ-secretases) that liberate Aβ from the amyloid precursor protein (APP). While evidence suggests that individuals who exercise regularly are at reduced risk for AD and studies of animal models demonstrate that running can ameliorate brain Aβ pathology and associated cognitive deficits, the underlying mechanisms are unknown.

View Article and Find Full Text PDF

BACE1-mediated cleavage of APP is a pivotal step in the production of the Alzheimer related Aβ peptide and inhibitors of BACE1 are currently in clinical development for the treatment of Alzheimer disease (AD). While processing and trafficking of APP has been extensively studied in non-neuronal cells, the fate of APP at neuronal synapses and in response to reduced BACE1 activity has not been fully elucidated. Here we examined the consequence of reduced BACE1 activity on endogenous synaptic APP by monitoring N- and C-terminal APP epitopes by immunocytochemistry.

View Article and Find Full Text PDF

Eps15 homology domain-containing proteins (EHDs) are conserved ATPases implicated in membrane remodeling. Recently, EHD1 was found to be enriched at synaptic release sites, suggesting a possible involvement in the trafficking of synaptic vesicles. We have investigated the role of an EHD1/3 ortholog (l-EHD) in the lamprey giant reticulospinal synapse.

View Article and Find Full Text PDF

Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require remodeling of the membrane structure.

View Article and Find Full Text PDF

The importance of the BAR domain of endophilin in synaptic vesicle endocytosis was tested in presynaptic microinjection experiments in the lamprey giant synapse. Antibodies as well as Fab fragments directed to the BAR domain caused a stimulus-dependent decrease in the number of synaptic vesicles along with an accumulation of shallow clathrin coated pits in the periactive zone. Moreover, the isolated BAR domain protein also caused an accumulation of shallow-coated pits in the periactive zone, in addition to appearance of narrow tubules in synaptic regions.

View Article and Find Full Text PDF

The synaptic vesicle is currently the most well-characterized cellular organelle. During neurotransmitter release it undergoes multiple cycles of exo- and endocytosis. Despite this the vesicle manages to retain its protein and lipid composition.

View Article and Find Full Text PDF

Epsin has been suggested to act as an alternate adaptor in several endocytic pathways. Its role in synaptic vesicle recycling remains, however, unclear. Here, we examined the role of epsin in this process by using the lamprey reticulospinal synapse as a model system.

View Article and Find Full Text PDF

Synaptic vesicle recycling has been proposed to depend on proteins which coordinate membrane and cytoskeletal dynamics. Here, we examine the role of the dynamin- and N-WASP (neural Wiskott-Aldrich syndrome protein)-binding protein syndapin/PACSIN at the lamprey reticulospinal synapse. We find that presynaptic microinjection of syndapin antibodies inhibits vesicle recycling evoked by intense (5 Hz or more), but not by light (0.

View Article and Find Full Text PDF

Deciphering the function of synaptic release sites is central to understanding neuronal communication. Here, we review studies of the lamprey giant reticulospinal synapse, a model that can be used to dissect synaptic vesicle trafficking at single release sites. The presynaptic axon is large and contains active zones that are spatially separated from each other.

View Article and Find Full Text PDF

Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ras, R-Ras, Rap) both inhibited autaptic responses. In a proportion of the neurons (25%, TcdA-10463; 54%, TcsL-1522), the inhibition was associated with a shift from activity-dependent depression to facilitation, indicating that the synaptic release probability was reduced.

View Article and Find Full Text PDF

Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity.

View Article and Find Full Text PDF

It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone.

View Article and Find Full Text PDF

Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin at the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon.

View Article and Find Full Text PDF

The giant reticulospinal synapse in lamprey provides a unique model to study synaptic vesicle traffic. The axon permits microinjections, and the active zones are often separated from each other, which makes it possible to track vesicle cycling at individual release sites. However, the proportion of reticulospinal synapses with individual active zones ("simple synapses") is unknown and a quantitative description of their organization is lacking.

View Article and Find Full Text PDF

Neurotensin (NT)-like peptides in the CNS of the lamprey Lampetra fluviatilis were studied by radioimmunoassay (C-terminal specific NT antiserum), reverse-phase HPLC and immunohistochemistry. Multiple peaks of NT-immunoreactive (-ir) material were observed upon HPLC, of which a major peak eluted in the position of bovine NT. Immunofluorescence histochemistry showed that a monoclonal antibody recognizing the N-terminal (1 - 11) fragment of NT, as well as two polyclonal NT antisera labelled a large number of cell bodies in the periventricular area of hypothalamus, including the postinfundibular commissural nucleus and the ventral and dorsal hypothalamic nuclei.

View Article and Find Full Text PDF