Despite the unprecedented performance of deep neural networks (DNNs) in computer vision, their clinical application in the diagnosis and prognosis of cancer using medical imaging has been limited. One of the critical challenges for integrating diagnostic DNNs into radiological and oncological applications is their lack of interpretability, preventing clinicians from understanding the model predictions. Therefore, we studied and propose the integration of expert-derived radiomics and DNN-predicted biomarkers in interpretable classifiers, which we refer to as ConRad, for computerized tomography (CT) scans of lung cancer.
View Article and Find Full Text PDFOver the last decade there has been an extensive evolution in the Artificial Intelligence (AI) field. Modern radiation oncology is based on the exploitation of advanced computational methods aiming to personalization and high diagnostic and therapeutic precision. The quantity of the available imaging data and the increased developments of Machine Learning (ML), particularly Deep Learning (DL), triggered the research on uncovering "hidden" biomarkers and quantitative features from anatomical and functional medical images.
View Article and Find Full Text PDF