Purpose: Metal-based nanoparticles (M-NPs) have attracted great attention in nanomedicine due to their capacity to amplify and improve the tumor targeting of medical beams. However, their simple, efficient, high-yield and reproducible production remains a challenge. Currently, M-NPs are mainly synthesized by chemical methods or radiolysis using toxic reactants.
View Article and Find Full Text PDFRadiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors.
View Article and Find Full Text PDFUltrasmall polyaminocarboxylate-coated gold nanoparticles (NPs), Au@DTDTPA and Au@TADOTAGA, that have been recently developed exhibit a promising potential for image-guided radiotherapy. In order to render the radiosensitizing effect of these gold nanoparticles even more efficient, the study of their localization in cells is required to better understand the relation between the radiosensitizing properties of the agents and their localization in cells and in tumors. To achieve this goal, post-functionalization of Au@DTDTPA nanoparticles by near-infrared (NIF) organic dyes (aminated derivative of cyanine 5, Cy5-NH) was performed.
View Article and Find Full Text PDFFrom the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death.
View Article and Find Full Text PDFBackground: Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs.
View Article and Find Full Text PDFThe use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe.
View Article and Find Full Text PDFAmifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts.
View Article and Find Full Text PDFRecently, the addition of nanoparticles (NPs) has been proposed as a new strategy to enhance the effect of radiotherapy particularly in the treatment of aggressive tumors such as glioblastoma. The physical processes involved in radiosensitisation by nanoparticles have been well studied although further understanding of its biological impact is still lacking, and this includes the localisation of these NPs in the target cells. Most studies were performed with NPs tagged with fluorescent markers.
View Article and Find Full Text PDFRecent groundbreaking developments in Omics and bioinformatics have generated new hope for overcoming the complexity and variability of (radio)biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and dozens of proteins interact in the frame of complex signaling and repair pathways (or, rather, networks) to preserve the integrity of the genome has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation.
View Article and Find Full Text PDFRecent ground-breaking developments in Omics have generated new hope for overcoming the complexity and variability of biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and proteins interact in the frame of complex networks to preserve genome integrity has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation.
View Article and Find Full Text PDFCell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient.
View Article and Find Full Text PDFAlternative pre-mRNA splicing is a fundamental post-transcriptional regulatory mechanism. Cancer-specific misregulation of the splicing process may lead to formation of irregular alternative splicing variants (ASVs) with a potentially negative impact on cellular homeostasis. Alternative splicing of BRCA1 pre-mRNA can give rise to BRCA1 protein isoforms that possess dramatically altered biological activities compared with full-length wild-type BRCA1.
View Article and Find Full Text PDFAccording to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure-the problematics addressed in this work.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is a heterogeneous disease with most patients following an aggressive clinical course, whereas others having an indolent behavior. We conducted an integrative and multidisciplinary analysis of 177 MCL to determine whether the immunogenetic features of the clonotypic B-cell receptors (BcR) may identify different subsets of tumors. Truly unmutated (100% identity) IGHV genes were found in 24% cases, 40% were minimally/borderline mutated (99.
View Article and Find Full Text PDFThe BRCA1 gene codes for a protein involved in the DNA double strand break (DDSB) repair. Alongside the dominant full-length splicing form of BRCA1, numerous endogenously expressed alternative splicing variants of unknown significance have been described in various tissues. Some of them retain the original BRCA1 reading frame but lack several critical BRCA1 structural domains, suggesting an altered function of the resulting protein in the BRCA1-regulated processes.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoma in adults. There are specific alterations that appear repeatedly in DLBCL cases and play a role in lymphomagenesis or progression of the disease. Some aberrations were used as prognostic markers in the pre-rituximab era.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is typified by translocation t(11;14)(q13;q32) causing upregulation of cyclin D1 and deregulation of cell cycle. The cyclin D1 activation plays a critical role in MCL pathogenesis but additional oncogenic events, such as aberrations of the ARF/MDM2/p53 pathway are also necessary for progression of the disease. We analyzed the p53 tumor suppressor in tumor tissue of 33 patients with MCL.
View Article and Find Full Text PDF