Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L.
View Article and Find Full Text PDFBackground And Aims: Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa.
View Article and Find Full Text PDFBackground And Aims: Understanding the mutual co-ordination of vegetative and reproductive growth is important in both agricultural and ecological settings. A competitive relationship between vegetative growth and fruiting is often highlighted, resulting in an apparent trade-off between structural growth and fruit production. However, our understanding of factors driving this relationship is limited.
View Article and Find Full Text PDFThe use of size-controlling rootstocks is central to modern high-density fruit production systems. While biological mechanisms responsible for vigor control are not fully understood, differences in water relations and carbohydrate storage ability have been suggested as two potential factors. To better understand the processes that control growth vigor, we analyzed the trunk radial variation at seasonal and diurnal timescales and measured the midday leaf water potential (ΨMD), leaf gas exchange and concentrations of non-structural carbohydrates (NSC) in apple trees of variety 'Jonagold' grafted on two rootstocks of contrasting growth vigor (dwarfing J-TE-G vs invigorating J-TE-H).
View Article and Find Full Text PDFBending and torsional properties of young roots and stems were measured in nine woody angiosperms. The variation in mechanical parameters was correlated to wood anatomical traits and analysed with respect to the other two competing functions of xylem (namely storage and hydraulics). Compared with stems, roots exhibited five times greater flexibility in bending and two times greater flexibility in torsion.
View Article and Find Full Text PDFThe study aims to assess variability in leaf water isotopic enrichment occurring in the field under natural conditions. We focused on seasonal variation and difference between sun-exposed and shaded leaves. Isotopic composition (δO, δH) of leaf water was monitored in a beech tree (Fagus sylvatica L.
View Article and Find Full Text PDFBackground: Vessel-associated cells (VACs) are highly specialized, living parenchyma cells that are in direct contact with water-conducting, dead vessels. The contact may be sparse or in large tight groups of parenchyma that completely surrounds vessels. VACs differ from vessel distant parenchyma in physiology, anatomy, and function and have half-bordered pits at the vessel-parenchyma juncture.
View Article and Find Full Text PDFParenchyma represents a critically important living tissue in the sapwood of the secondary xylem of woody angiosperms. Considering various interactions between parenchyma and water transporting vessels, we hypothesize a structure-function relationship between both cell types. Through a generalized additive mixed model approach based on 2,332 woody angiosperm species derived from the literature, we explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors.
View Article and Find Full Text PDFThere has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe.
View Article and Find Full Text PDFVariation in xylem vessel diameter is one of the most important parameters when evaluating plant water relations. This review provides a synthesis of the ecophysiological implications of variation in lumen diameter together with a summary of our current understanding of vessel development and its endogenous regulation. We analyzed inter-specific variation of the mean hydraulic vessel diameter (D ) across biomes, intra-specific variation of D under natural and controlled conditions, and intra-plant variation.
View Article and Find Full Text PDFThe release of water from storage compartments to the transpiration stream is an important functional mechanism that provides the buffering of sudden fluctuations in water potential. The ability of tissues to release water per change in water potential, referred to as hydraulic capacitance, is assumed to be associated with the anatomy of storage tissues. However, information about how specific anatomical parameters determine capacitance is limited.
View Article and Find Full Text PDFPremise Of The Study: Concentrations of nonstructural carbohydrates (NSCs) are used as proxies for the net carbon balance of trees and as indicators of carbon starvation resulting from environmental stress. Woody organs are the largest NSC-storing compartments in forest ecosystems; therefore, it is essential to understand the factors that affect the size of this important storage pool. In wood, NSC are predominantly deposited in ray and axial parenchyma (RAP); however, direct links between nutrient storage and RAP anatomy have not yet been established.
View Article and Find Full Text PDFParenchyma is an important tissue in secondary xylem of seed plants, with functions ranging from storage to defence and with effects on the physical and mechanical properties of wood. Currently, we lack a large-scale quantitative analysis of ray parenchyma (RP) and axial parenchyma (AP) tissue fractions. Here, we use data from the literature on AP and RP fractions to investigate the potential relationships of climate and growth form with total ray and axial parenchyma fractions (RAP).
View Article and Find Full Text PDFThe evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species.
View Article and Find Full Text PDFCellulose delta18O and deltaD can provide insights on climates and hydrological cycling in the distant past and how these factors differ spatially. However, most studies of plant cellulose have used only one isotope, most commonly delta18O, resulting in difficulties partitioning variation in delta18O of precipitation vs. evaporative conditions that affect leaf water isotopic enrichment.
View Article and Find Full Text PDFRecent studies have suggested that species-specific pit properties such as pit membrane thickness, pit membrane porosity, torus-to-aperture diameter ratio and pit chamber depth influence xylem vulnerability to cavitation. Despite the indisputable importance of using mean pit characteristics, considerable variability in pit structure within a single species or even within a single pit field should be acknowledged. According to the rare pit hypothesis, a single pit that is more air-permeable than many neighboring pits is sufficient to allow air-seeding.
View Article and Find Full Text PDFForest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die-off with climate change.
View Article and Find Full Text PDFVariation in xylem structure and function has been extensively studied across different species with a wide taxonomic, geographical, and ecological coverage. In contrast, our understanding of how xylem of a single species can adjust to different growing condition remains limited. Here phenotypic and developmental plasticity in xylem traits of hybrid poplar (Populus trichocarpa×deltoides) was studied.
View Article and Find Full Text PDFNitrogen availability has a strong influence on plant growth and development. In this study, we examined the effect of nitrogen availability on xylogenesis in hybrid poplar (Populus trichocarpa x deltoides H11-11). Saplings of hybrid poplar were fertilized for 33 d with either high or adequate levels of ammonium nitrate.
View Article and Find Full Text PDFIntervessel pits act as safety valves that prevent the spread of xylem embolism. Pectin-calcium crosslinks within the pit membrane have been proposed to affect xylem vulnerability to cavitation. However, as the chemical composition of pit membranes is poorly understood, this hypothesis has not been verified.
View Article and Find Full Text PDFThe effect of shading on xylem hydraulic traits and xylem anatomy was studied in hybrid poplar (Populus trichocarpa x deltoides, clone H11-11). Hydraulic measurements conducted on stem segments of 3-month-old saplings grown in shaded (SH) or control light (C) conditions indicated that shading resulted in more vulnerable and less efficient xylem. Air is thought to enter vessels through pores in inter-vessel pit membranes, thereby nucleating cavitation.
View Article and Find Full Text PDFPlant Signal Behav
September 2010
Hemiparasitic plants display a unique strategy of resource acquisition combining parasitism of other species and own photosynthetic activity. Despite the active photoassimilation and green habit, they acquire substantial amount of carbon from their hosts. The organic carbon transfer has a crucial influence on the nature of the interaction between hemiparasites and their hosts which can oscillate between parasitism and competition for light.
View Article and Find Full Text PDFWe studied the influence of nitrogen (N) on hydraulic traits and aquaporin (AQP) expression in the stem xylem of hybrid poplar saplings (Populus trichocarpa (Torr. & Gray) x deltoides Bartr. ex Marsh clone H11-11).
View Article and Find Full Text PDF