Publications by authors named "Lenka Kubiczkova"

Background: MicroRNAs are short non-coding regulators of gene expression. The human miR-29 family consists of three members: miR-29a, miR-29b and miR-29c. Members of this family were found to be aberrantly expressed in various types of tumors, including hematological malignancies.

View Article and Find Full Text PDF

Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response.

View Article and Find Full Text PDF

The stem cell marker nestin (NES) is found in dividing cells of developing and regenerating tissues. Upon terminal differentiation, NES expression is diminished but may be re-expressed following injury or in cancer. Surprisingly, we recently confirmed NES as a tumour-specific marker for mature CD138(+) 38(+) plasma cells (PC) in multiple myeloma (MM).

View Article and Find Full Text PDF

Multiple myeloma still remains incurable in the majority of cases prompting a further search for new and better prognostic markers. Emerging evidence has suggested that circulating microRNAs can serve as minimally invasive biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. In this study, a global analysis of serum microRNAs by TaqMan Low Density Arrays was performed, followed by quantitative real-time PCR.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a clonal plasma cell malignancy. Although MM is still not completely curable, it can be maintained at the level of a long-term chronic condition. Irrespective of the treatment strategy, relapse is still a major problem for most patients.

View Article and Find Full Text PDF

The objective of this study was to describe co-expression correlations of cell cycle regulatory genes in multiple myeloma (MM) and plasma cell leukemia (PCL). Our results highlight the presence of dynamic equilibrium between co-expression of activator and inhibitor gene sets. Moreover inhibitor set is more sensitive to the activator changes, not vice versa.

View Article and Find Full Text PDF

Glioblastoma is the most common and the most aggressive type of brain cancer. Aberrations of the RTK/RAS/PI3K-, p53-, and RB cell signaling pathways were recognized as a core requirement for pathogenesis of glioblastoma. The p53 tumor suppressor functions as a transcription factor transactivating expression of its target genes in response to various stress stimuli.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a low proliferative tumor of postgerminal center plasma cell (PC). Centrosome amplification (CA) is supposed to be one of the mechanisms leading to chromosomal instability. Also, CA is associated with deregulation of cell cycle, mitosis, DNA repair and proliferation.

View Article and Find Full Text PDF

In multiple myeloma (MM), biologic complexity originates from complex oncogenic processes involving somatic acquisition of myriad mutations coupled with genetic variability within the host. This pathogenically determined molecular heterogeneity predetermines clinical intricacy. In this study, we performed gene expression profiling (GEP) focusing on centrosome-related genes to determine the molecular heterogeneity for centrosome-associated genes in patients with MM.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM) is a plasma cell malignancy frequently associated with impaired immune cell numbers and functions. In MM, several studies have previously shown that CD4 regulatory T (Treg) cells hamper effector T cell functions and enhance immune dysfunction. In this study, we aimed to prove the presence of functionally suppressive Treg cells expressing CD8 phenotype (CD8 Treg cells) in MM.

View Article and Find Full Text PDF

The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors.

View Article and Find Full Text PDF

Multiple myeloma is the second most common hematological cancer in the world. It is characterized by accumulation of malignant plasma cells in the bone marrow, osteolytic lesions and monoclonal immunoglobulins in blood/urine. With the introduction of immunomodulatory drugs into the treatment protocol, the outcome of multiple myeloma patients has dramatically improved with more than 30% of patients surviving for 10 years thus shifting multiple myeloma to a treatable condition.

View Article and Find Full Text PDF

Purpose: MicroRNA-21 (miR-21) is one of the miRNAs that are frequently and highly overexpressed in tumor tissue of colorectal cancer (CRC) patients; however, only a little is known about its functional role in CRC.

Methods: We examined the expression level of miR-21 in 44 paired samples of tumoral and non-tumoral colon tissues diagnosed for CRC using TaqMan real-time PCR method. Furthermore, we used miR-21 inhibitor (anti-miR-21) to transient knockdown of miR-21 in DLD-1 colon cancer cells and examined the effects of miR-21 silencing on viability, apoptosis, chemosensitivity, cell cycle, and migration of DLD1 cells.

View Article and Find Full Text PDF