The activation of Src kinase in cells is strictly controlled by intramolecular inhibitory interactions mediated by SH3 and SH2 domains. They impose structural constraints on the kinase domain holding it in a catalytically non-permissive state. The transition between inactive and active conformation is known to be largely regulated by the phosphorylation state of key tyrosines 416 and 527.
View Article and Find Full Text PDFCells have developed a unique set of molecular mechanisms that allows them to probe mechanical properties of the surrounding environment. These systems are based on deformable primary mechanosensors coupled to tension transmitting proteins and enzymes generating biochemical signals. This modular setup enables to transform a mechanical load into more versatile biochemical information.
View Article and Find Full Text PDFSrc kinase plays an important role in a multitude of fundamental cellular processes and is often found deregulated in tumors. Active Src adopts an open conformation, whereas inactive Src is characterized by a very compact structure stabilized by inhibitory intramolecular interactions. Taking advantage of this spatial regulation, we constructed a fluorescence resonance energy transfer (FRET)-based Src biosensor and analyzed conformational changes of Src following Src activation and the spatiotemporal dynamics of Src activity in cells.
View Article and Find Full Text PDFProtein p130Cas constitutes an adaptor protein mainly involved in integrin signaling downstream of Src kinase. Owing to its modular structure, p130Cas acts as a general regulator of cancer cell growth and invasiveness induced by different oncogenes. However, other mechanisms of p130Cas signaling leading to malignant progression are poorly understood.
View Article and Find Full Text PDFThe tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain.
View Article and Find Full Text PDF