Publications by authors named "Lenka Cernikova"

Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.

View Article and Find Full Text PDF

In 2022/2023, Europe experienced its third consecutive season of high-pathogenicity avian influenza. During this period, the Czech Republic was again severely affected. For the first time, the number of culled birds approached one million, which was three times higher than in previous seasons.

View Article and Find Full Text PDF

In 2021/2022, the re-emergence of highly pathogenic avian influenza (HPAI) occurred in Europe. The outbreak was seeded from two sources: resident and reintroduced viruses, which is unprecedented in the recorded history of avian influenza. The dominant subtype was H5N1, which replaced the H5N8 subtype that had predominated in previous seasons.

View Article and Find Full Text PDF

In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration.

View Article and Find Full Text PDF

Herein, we present our findings of an early appearance of the Monkeypox virus in Prague, Czech Republic. A retrospective analysis of biological samples, carried out on the 28th of April, revealed a previously unrecognized case of Monkeypox virus (MPxV) infection. Subsequent data analysis confirmed that the virus strain belongs to the ongoing outbreak.

View Article and Find Full Text PDF

In 2020-2021, the second massive dissemination of a highly pathogenic avian influenza of the H5Nx subtype occurred in Europe. During this period, the virus caused numerous outbreaks in poultry, including in the Czech Republic. In the present study, we provide an insight into the genetic variability of the Czech/2021 (CZE/2021) H5N8 viruses to determine the relationships between strains from wild and domestic poultry and to infer transmission routes between the affected flocks of commercial poultry.

View Article and Find Full Text PDF

We report an outbreak of SARS-CoV-2 lineage alpha in gorillas and felid species in a zoo in Prague, Czech Republic. The course of illness and clinical signs are described, as are the results of characterization of these particular SARS-CoV-2 variants by next-generation sequencing and phylogenetic analysis. The putative transmission routes are also discussed.

View Article and Find Full Text PDF

Canine distemper is a highly contagious viral disease in carnivores and represents a serious threat for both wild and domestic animals. The aim of our study was to monitor the occurrence of the canine distemper virus in wildlife from the Czech Republic, reveal the H gene heterogeneity in positive samples and perform subsequent phylogenetic analysis. In total, 412 wild animals of 10 species were included in the study: 219 red foxes (), 79 European badgers (), 47 European otters (), 40 stone martens (), 10 pine martens (), 7 raccoons (), 5 undetermined martens ( sp.

View Article and Find Full Text PDF

Wild small mammals and ticks play an important role in maintaining and spreading zoonoses in nature, as well as in captive animals. The aim of this study was to monitor selected agents with zoonotic potential in their reservoirs and vectors in a zoo, and to draw attention to the risk of possible contact with these pathogens. In total, 117 wild small mammals (rodents) and 166 ticks were collected in the area of Brno Zoo.

View Article and Find Full Text PDF

The mutual dependence of human and animal health is central to the One Health initiative as an integrated strategy for infectious disease control and management. A crucial element of the One Health includes preparation and response to influenza A virus (IAV) threats at the human-animal interface. The IAVs are characterized by extensive genetic variability, they circulate among different hosts and can establish host-specific lineages.

View Article and Find Full Text PDF

Phosphorylated derivatives of phosphatidylinositol (PIPs) are key membrane lipid residues involved in clathrin-mediated endocytosis (CME). CME relies on PIP species PI(4,5)P2 to mark endocytic sites at the plasma membrane (PM) associated to clathrin-coated vesicle (CCV) formation. The highly diverged parasitic protist Giardia lamblia presents disordered and static clathrin assemblies at PM invaginations, contacting specialized endocytic organelles called peripheral vacuoles (PVs).

View Article and Find Full Text PDF

Phosphoinositides (or phosphatidylinositol phosphates, PIPs) are low-abundance membrane phospholipids that act, in conjunction with their binding partners, as important constitutive signals defining biochemical organelle identity as well as membrane trafficking and signal transduction at eukaryotic cellular membranes. In this review, we present roles for PIP residues and PIP-binding proteins in endocytosis and autophagy in protist parasites such as Trypanosoma brucei, Toxoplasma gondii, Plasmodium falciparum, Entamoeba histolytica, and Giardia lamblia. Molecular parasitologists with an interest in comparative cell and molecular biology of membrane trafficking in protist lineages beyond the phylum Apicomplexa, along with cell and molecular biologists generally interested in the diversification of membrane trafficking in eukaryotes, will hopefully find this review to be a useful resource.

View Article and Find Full Text PDF

The ongoing evolution of microbial pathogens represents a significant issue in diagnostic PCR/qPCR. Many assays are burdened with false negativity due to mispriming and/or probe-binding failures. Therefore, PCR/qPCR assays used in the laboratory should be periodically re-assessed in silico on public sequences to evaluate the ability to detect actually circulating strains and to infer potentially escaping variants.

View Article and Find Full Text PDF

We tested sera of 24 free-ranging European brown bears ( Ursus arctos) from six regions of Slovakia for antibodies to 10 viral agents. We tested sera by an indirect fluorescence antibody test for antibodies to canine distemper virus (CDV), canine coronavirus (CCV), canine parvovirus type 2 (CPV-2), canine adenovirus, canine parainfluenza virus type 2 (CPIV-2), and canine herpesvirus type 1 (CHV-1). We used an enzyme-linked immunosorbent assay for detection of antibodies to hepatitis E virus, bluetongue virus, West Nile virus (WNV), and Aujeszky's disease virus (ADV).

View Article and Find Full Text PDF
Article Synopsis
  • The text is a correction to an article originally published with the DOI 10.1371/journal.pone.0151204.
  • The correction likely addresses errors or inaccuracies in the previous publication.
  • The correction is essential for maintaining the integrity and reliability of the research findings presented in the original article.
View Article and Find Full Text PDF

Here, we present a comprehensive analysis of the H5N8/H5N5 highly pathogenic avian influenza (HPAI) virus strains detected in the Czech Republic during an outbreak in 2017. Network analysis of the H5 Hemagglutinin (HA) from 99% of the outbreak localities suggested that the diversity of the Czech H5N8/H5N5 viruses was influenced by two basic forces: local microevolution and independent incursions. The geographical occurrence of the central node H5 HA sequences revealed three eco-regions, which apparently played an important role in the origin and further spread of the local H5N8/HPAI variants across the country.

View Article and Find Full Text PDF

Psittacine beak and feather disease (PBFD) is one of the most significant viral diseases in psittacine birds. The aim of the presented study was to develop a highly specific and sensitive TaqMan real-time PCR assay for universal detection of beak and feather disease virus (BFDV). Primers and a hydrolysis probe were selected on the highly conserved regions belonging to the ORF1 of the BFDV genome which were identified by aligning 814 genomic sequences downloaded from the GenBank database.

View Article and Find Full Text PDF

Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay.

View Article and Find Full Text PDF

Giardia lamblia is a parasitic protozoan that infects a wide range of vertebrate hosts including humans. Trophozoites are non-invasive but associate tightly with the enterocyte surface of the small intestine. This narrow ecological specialization entailed extensive morphological and functional adaptations during host-parasite co-evolution, including a distinctly polarized array of endocytic organelles termed peripheral vacuoles (PVs), which are confined to the dorsal cortical region exposed to the gut lumen and are in close proximity to the plasma membrane (PM).

View Article and Find Full Text PDF

In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens.

View Article and Find Full Text PDF

The development of a diagnostic polymerase chain reaction (PCR) or quantitative PCR (qPCR) assay for universal detection of highly variable viral genomes is always a difficult task. The purpose of this chapter is to provide a guideline on how to align, process, and evaluate a huge set of homologous nucleotide sequences in order to reveal the evolutionarily most conserved positions suitable for universal qPCR primer and hybridization probe design. Attention is paid to the quantification and clear graphical visualization of the sequence variability at each position of the alignment.

View Article and Find Full Text PDF

Influenza A virus (IAV) in wild bird reservoir hosts is characterized by the perpetuation in a plethora of subtype and genotype constellations. Multiyear monitoring studies carried out during the last two decades worldwide have provided a large body of knowledge regarding the ecology of IAV in wild birds. Nevertheless, other issues of avian IAV evolution have not been fully elucidated, such as the complexity and dynamics of genetic interactions between the co-circulating IAV genomes taking place at a local-scale level or the phenomenon of frozen evolution.

View Article and Find Full Text PDF

The objective of our study was to provide a genotype analysis of H7N7 and H7N9 influenza A viruses (IAV) and infer their relationships to co-circulating non-H7 IAV genomes. The H7N7 strains were collected in central Europe (Hungary-1, Czech Republic-1, Slovenia-1 and Poland-4) and the H7N9 in the Czech Republic and Spain between 2007 and 2011. Hand in hand with this effort, a novel IAV genotype visualization approach called digital genotyping was developed.

View Article and Find Full Text PDF