About one-third of individuals with diabetes develop diabetic retinopathy (DR), with one-tenth experiencing vision-threatening conditions such as diabetic macular edema (DME) or proliferative diabetic retinopathy (PDR). Current treatments only show recovery in 50% of cases, and the disease often remains asymptomatic. Therefore, novel early detection methods and new biomarkers are crucial.
View Article and Find Full Text PDFMetabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health.
View Article and Find Full Text PDFTrends Endocrinol Metab
October 2023
Increasing evidence suggests that the brain plays a key role in glucose homeostasis, making it a potential target for the treatment of type 2 diabetes (T2D). Sun et al. recently reported that intracerebroventricular (ICV) administration of a single dose of fibroblast growth factor 4 (FGF4) can induce sustained T2D remission in mouse models in the absence of any risk of hypoglycemia.
View Article and Find Full Text PDFRetinal pigment epithelial (RPE) cell dysfunction is a key driving force of AMD. RPE cells form a metabolic interface between photoreceptors and choriocapillaris, performing essential functions for retinal homeostasis. Through their multiple functions, RPE cells are constantly exposed to oxidative stress, which leads to the accumulation of damaged proteins, lipids, nucleic acids, and cellular organelles, including mitochondria.
View Article and Find Full Text PDFThis study evaluated if tauroursodeoxycholic acid (TUDCA) alleviates pro-inflammatory and endoplasmic reticulum (ER) stress-mediated visual deficits in diabetic tie2-TNF transgenic mice via Takeda G protein-coupled receptor 5 (TGR5) receptor signaling. Adult tie2-TNF transgenic or age-matched C57BL/6J (wildtype, WT) mice were made diabetic and treated subcutaneously with TUDCA. After 4 weeks, visual function, vascular permeability, immunohistology, and molecular analyses were assessed.
View Article and Find Full Text PDFObesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health.
View Article and Find Full Text PDFBackground: Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation.
View Article and Find Full Text PDFIncreased O-GlcNAcylation, a well-known post-translational modification of proteins causally linked to various detrimental cellular functions in pathological conditions including diabetic retinopathy (DR). Previously we have shown that endothelial activation induced by inflammation and hyperglycemia results in the endoplasmic reticulum (ER) stress-mediated intercellular junction alterations accompanied by visual deficits in a tie2-TNF-α transgenic mouse model. In this study, we tested the hypothesis that increased ER stress via O-GlcNAcylation of VE-Cadherin likely contribute to endothelial permeability.
View Article and Find Full Text PDFBackground: The eye is considered as a window of the disease, and a better understanding of neurodegenerative changes in the eye may help diagnose and manage neurodegenerative diseases including the diseases of brain, heart, kidney and liver. In the eye, the blood retinal barrier (BRB] is maintained by a combination of endothelial cells, pericytes, and glia. This BRB integrity is fundamental to the physiology of retinal cellular function and accurate vision.
View Article and Find Full Text PDFBackground: Early-stage diabetic retinopathy (DR) is characterized by neurovascular defects. In this study, we hypothesized that human adipose-derived stem cells (ASCs) positive for the pericyte marker CD140b, or their secreted paracrine factors, therapeutically rescue early-stage DR features in an Ins2 mouse model.
Methods: Ins2 mice at 24 weeks of age received intravitreal injections of CD140b-positive ASCs (1000 cells/1 μL) or 20× conditioned media from cytokine-primed ASCs (ASC-CM, 1 μL).
Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. The interplay between hyperglycemia and endothelial activation in inducing endoplasmic reticulum (ER) stress pathways and visual deficits in DR is not fully understood. To address this, we used a mouse model of chronic vascular activation using endothelial-specific tumor necrosis factor-α (TNF-α)-expressing (tie2-TNF) mice to induce diabetes with streptozotocin.
View Article and Find Full Text PDFBlast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury.
View Article and Find Full Text PDFBackground: A role of proinflammation has been implicated in the pathogenesis of diabetes, but the up-stream regulatory signals and molecular signatures are poorly understood. While histone modifications such as changes in histone deacetylase (HDAC) are emerging as novel epigenetic biomarkers, there is lack of studies to demonstrate their clinical relevance in diabetes. Therefore, we investigated the extent of HDAC machinery and inflammatory signals in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes mellitus (T2DM) compared to control subjects.
View Article and Find Full Text PDFThe mechanism of perturbed immune function in patients with T2DM is poorly understood. Recent studies imply a role for ER stress in linking immune-system alterations and metabolism. Here, we investigated whether ER stress markers and its downstream effector signals are altered in patients with type 2 diabetes along with proinflammatory augmentation.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress is emerging as a unifying paradigm and one of the underlying mechanisms in the genesis of diabetes and its complications. While this has prompted the development of ER stress inhibitors, there is a limitation in monitoring of ER stress in vitro and in vivo by reliable methodologies. We validated the secreted alkaline phosphatase (SEAP) activity as a surrogate marker of ER stress in mouse β-TC6 cells exposed to glucolipotoxicity or tunicamycin and studied insulin secretion along with alterations in ER stress markers.
View Article and Find Full Text PDFChronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress.
View Article and Find Full Text PDFIndian J Clin Biochem
April 2010
The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. Accumulating evidence suggests that ER stress plays a role in the pathogenesis of diabetes, contributing to pancreatic β-cell loss and insulin resistance.
View Article and Find Full Text PDFGallic acid is claimed to possess antioxidant, antiinflammatory and cytoprotective effects. Since pancreatic islets from Type 2 diabetic patients have functional defects, it was hypothesized that glucolipotoxicity might induce apoptosis in beta-cells and gallic acid could offer protection. To test this, RINm5F beta-cells were exposed to high glucose (25 microM) or palmitate (500 microM) or a combination of both for 24 h in the presence and absence of gallic acid.
View Article and Find Full Text PDF