Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life.
View Article and Find Full Text PDFVancomycin is one of the last lines of defense against certain drug-resistant bacteria-caused infections. However, the high susceptibility to drug resistance and high toxicity seriously limit the application of vancomycin. Nanoantibiotics provide opportunities to solve these problems.
View Article and Find Full Text PDFWe reported a straightforward and low-cost method to fabricate stretchable biofuel cells by using liquid metal-based metal-polymer conductors. The liquid-metal-based metal-polymer conductors had a conductivity of 2.7 × 10 S/m and a stretchability larger than 200%, giving the biofuel cell good conformability to the skin.
View Article and Find Full Text PDFAdv Healthc Mater
September 2022
Multidrug-resistant (MDR) bacteria-infected wounds are challenging issues that threaten human health. Herein, L-thioproline (T) and Boc-capped L-thioproline (BT)-decorated gold nanoparticles (TBT-GNPs) with potent antibacterial activity against MDR bacteria are reported. The TBT-GNPs are composited with bacterial cellulose to form wound dressings which show excellent antimicrobial performance both in vitro and in vivo.
View Article and Find Full Text PDFNanomaterials usually kill bacteria via multiple mechanisms which are not explicit to the same degree as those of conventional antibiotics. This situation may hinder the development of novel nanoscale antibiotics. Here, we present aminophenol (AP) to modify gold nanoparticles (AP_Au NPs) which show a broad antibacterial spectrum and potent antibacterial effects against multidrug-resistant (MDR) bacteria with clear antibacterial mechanisms.
View Article and Find Full Text PDFChem Commun (Camb)
February 2022
We report aminophenol (A)-modified gold nanoparticles (AGNPs), which have potent antibacterial effects against multidrug-resistant bacteria with a broad antibacterial spectrum. Moreover, a series of and models indicate that AGNPs are much less ototoxic than aminoglycosides. AGNPs thus have the potential to replace aminoglycosides as novel antibacterial agents for clinical applications.
View Article and Find Full Text PDFThe pharmacokinetics is a critical factor determining the clinical applicability of nanomaterials. Systematic study of the pharmacokinetics of functional nanomaterials is thus significant for promoting their applications. Herein, we take aminophenylboronic acid and mercaptophenylboronic acid-co-modified gold nanoparticles (A/M-Au NPs) with potent and tunable antibacterial activity as an example to study their behaviors in vitro and in vivo.
View Article and Find Full Text PDFThe adoption of neural interfacing into neurological diagnosis is severely hampered by the complex, costly, and error-prone manufacturing methods, requiring new fabrication processes and materials for flexible neural interfacing. Here a strategy for fabricating highly stretchable neural electrode arrays based on screen printing of liquid metal conductors onto polydimethylsiloxane substrates is presented. The screen-printed electrode arrays show a resolution of 50 µm, which is ideally applicable to neural interfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Flexible textile displays can be revolutionary for information transmission at any place and any time. Typically, textile displays are fabricated by traditional rigid electronics that sacrifice mechanical flexibility of devices or by flexible electronics that do not have an appropriate choice to arbitrarily control single pixels. This work reports on an electroluminescent fabric woven by ultrastretchable fibers (electroluminescent fibers up to 400% stretch, electrode fibers up to 250% stretch), which can exhibit the pixel-based arbitrarily controllable pattern display by a mobile phone application.
View Article and Find Full Text PDFAdv Healthc Mater
February 2021
Narrowing the mechanical mismatch between biological tissues (typically soft) and neural interfaces (hard) is essential for maintaining signal quality for the electrical recording of neural activity. However, only a few materials can satisfy all requirements for such electronics, which need to be both biocompatible and sufficiently soft. Here, a highly stretchable electrode array (SEA) is introduced, based on the liquid metal-polymer conductor (MPC), achieving high mechanical flexibility and good cytocompatability for neural interfaces.
View Article and Find Full Text PDF