New Findings: What is the central question of this study? Chronic intermittent hypoxia (CIH) causes increased arterial pressure (AP), sympathetic overactivity and changes in expiratory modulation of sympathetic activity. However, changes in the short-term sleep-wake cycle pattern after CIH and their potential impact on cardiorespiratory parameters have not been reported previously. What is the main finding and its importance? Exposure to CIH for 10 days elevates AP in wakefulness and sleep but does not cause major changes in short-term sleep-wake cycle pattern.
View Article and Find Full Text PDFKey Points: Rats subjected to sustained hypoxia (SH) present increases in arterial pressure (AP) and in glutamatergic transmission in the nucleus tractus solitarius (NTS) neurons sending projections to ventrolateral medulla (VLM). Treatment with minocycline, a microglial inhibitor, attenuated the increase in AP in response to SH. The increase in the amplitude of glutamatergic postsynaptic currents in the NTS-VLM neurons, induced by postsynaptic mechanisms, was blunted by minocycline treatment.
View Article and Find Full Text PDFSustained hypoxia (SH) activates chemoreceptors to produce cardiovascular and respiratory responses to bring the arterial partial pressure of O back to the physiological range. We evaluated the effect of SH (fraction of inspired O = 0.10, 24 h) on glutamatergic synaptic transmission and the interaction neuron-astrocyte in neurons of the nucleus tractus solitarii (NTS).
View Article and Find Full Text PDFKey Points: Acute hypoxia induces active expiration in rectus abdominis (RA) muscles in conscious freely moving rats, although its overall contribution is smaller than in internal oblique (IO) muscles. Tonically active and silent RA motoneurons were identified in in vitro preparations of rat spinal cords. Sustained hypoxia (SH) increased the synaptic strength and induced morphological changes in tonically active RA motoneurons.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? After sino-aortic denervation (SAD), rats present normal levels of mean arterial pressure (MAP), high MAP variability and changes in breathing. However, mechanisms involved in SAD-induced respiratory changes and their impact on the modulation of sympathetic activity remain unclear. Herein, we characterized the firing frequency of medullary respiratory neurons after SAD.
View Article and Find Full Text PDFSympathetic activity displays rhythmic oscillations generated by brainstem inspiratory and expiratory neurons. Amplification of these rhythmic respiratory-related oscillations is observed in rats under enhanced central respiratory drive or during development of neurogenic hypertension. Herein, we evaluated the involvement of ventral medullary sympatho-excitatory catecholaminergic C1 neurons, using inhibitory Drosophila allatostatin receptors, for the enhanced expiratory-related oscillations in sympathetic activity in rats submitted to chronic intermittent hypoxia (CIH) and following activation of both peripheral (hypoxia) and central chemoreceptors (hypercapnia).
View Article and Find Full Text PDFWhat is the central question of this study? Sino-aortic denervated (SAD) rats present normal levels of sympathetic activity and mean arterial pressure. However, neural mechanisms regulating the sympathetic activity in the absence of arterial baroreceptors remain unclear. Considering that respiration modulates the sympathetic activity, we hypothesize that changes in the respiratory network contribute to keep the sympathetic outflow in the normal range after removal of arterial baroreceptors.
View Article and Find Full Text PDFAlthough it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O for 40 s at 9-min intervals).
View Article and Find Full Text PDFWhat is the central question of the study? There are sex differences in the respiratory network and in the regulation of arterial blood pressure. Female rats develop hypertension after chronic intermittent hypoxia (CIH). In this context, we evaluated the respiratory-related mechanism underlying the development of hypertension in CIH-exposed female rats.
View Article and Find Full Text PDFWhat is the central question of this study? The arterial baroreflex regulates arterial pressure within a narrow range of variation. After sino-aortic denervation (SAD), rats show a large increase in arterial pressure variability, but mean arterial pressure levels remain similar to those of control rats. Considering that breathing influences the control of arterial pressure, the question is: to what extent does SAD cause changes in breathing? What is the main finding and its importance? Removal of arterial baroreceptors produced changes in breathing in rats, marked by a reduction in respiratory frequency, but not hypertension.
View Article and Find Full Text PDFChronic intermittent hypoxia (CIH) produces respiratory-related sympathetic overactivity and hypertension in rats. In this study, we tested the hypothesis that the enhanced central respiratory modulation of sympathetic activity after CIH also decreases the sympathoinhibitory component of baroreflex of rats, which may contribute to the development of hypertension. Wistar rats were exposed to CIH or normoxia (control group) for 10 days.
View Article and Find Full Text PDFWhat is the central question of this study? What are the effects of hypoxic preconditioning upon the cardiovascular and respiratory responses to subsequent episodes of chronic intermittent hypoxia? What is the main finding and its importance? The cardiovascular and respiratory responses to a chronic intermittent hypoxia protocol were not altered by previous exposure to intermittent or sustained hypoxia. These findings show that preconditioning to hypoxia produced neither facilitation nor protection from the cardiovascular and respiratory dysfunctions in response to subsequent episodes of chronic intermittent hypoxia in juvenile rats. Rats exposed to chronic intermittent hypoxia (CIH) develop hypertension, which is associated with changes in the coupling of sympathetic and respiratory activities.
View Article and Find Full Text PDFHumans ascending to high altitudes are submitted to sustained hypoxia (SH), activating peripheral chemoreflex with several autonomic and respiratory responses. Here we analyzed the effect of short-term SH (24 h, FIO210%) on the processing of cardiovascular and respiratory reflexes using an in situ preparation of rats. SH increased both the sympatho-inhibitory and bradycardiac components of baroreflex and the sympathetic and respiratory responses of peripheral chemoreflex.
View Article and Find Full Text PDFWhat is the central question of this study? Chronic intermittent hypoxia (CIH) induces hypertension in male rats. There is evidence that the development of high blood pressure in females is attenuated in other models of hypertension. Due to the lack of information about the cardiovascular effect of CIH in female rats, we set out to determine whether female rats develop hypertension after CIH.
View Article and Find Full Text PDFIndividuals experiencing sustained hypoxia (SH) exhibit adjustments in the respiratory and autonomic functions by neural mechanisms not yet elucidated. In the present study we evaluated the central mechanisms underpinning the SH-induced changes in the respiratory pattern and their impact on the sympathetic outflow. Using a decerebrated arterially perfused in situ preparation, we verified that juvenile rats exposed to SH (10% O2) for 24 h presented an active expiratory pattern, with increased abdominal, hypoglossal and vagal activities during late-expiration (late-E).
View Article and Find Full Text PDFThe respiratory pattern generator modulates the sympathetic outflow, the strength of which is enhanced by challenges produced by hypoxia. This coupling is due to the respiratory-modulated presympathetic neurons in the rostral ventrolateral medulla (RVLM), but the underlining electrophysiological mechanisms remain unclear. For a better understanding of the neural substrates responsible for generation of this respiratory-sympathetic coupling, we combined immunofluorescence, single cell qRT-pCR, and electrophysiological recordings of the RVLM presympathetic neurons in in situ preparations from normal rats and rats submitted to a metabolic challenge produced by chronic intermittent hypoxia (CIH).
View Article and Find Full Text PDFThere is evidence that sympathoexcitatory and respiratory responses to chemoreflex activation involve ventrolateral medulla-projecting nucleus tractus solitarius (NTS) neurons (NTS-VLM neurons) and also that ATP modulates this neurotransmission. Here, we evaluated whether or not astrocytes is the source of endogenous ATP modulating the synaptic transmission in NTS-VLM neurons. Synaptic activities of putative astrocytes or NTS-VLM neurons were recorded using whole cell patch clamp.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
June 2011
Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [Bötzinger complex (BötC)] and inspiratory [pre-Bötzinger complex (pre-BötC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/BötC) enhanced the tachypneic (120 ± 9 vs.
View Article and Find Full Text PDFIn the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats. Guide-cannulae were bilaterally implanted in the direction of the PVN of male Wistar rats. Femoral artery and vein were catheterized one day before the experiments.
View Article and Find Full Text PDFChemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80microg/kg) or saline (0.
View Article and Find Full Text PDFIn the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg).
View Article and Find Full Text PDFPeripheral chemoreflex activation in awake rats or in the working heart-brainstem preparation (WHBP) produces sympathoexcitation, bradycardia and an increase in the frequency of phrenic nerve activity. Our focus is the neurotransmission of the sympathoexcitatory component of the chemoreflex within the nucleus of the tractus solitarius (NTS), and recently we verified that the simultaneous antagonism of ionotropic glutamate and purinergic P(2) receptors in the NTS blocked the pressor response and increased thoracic sympathetic activity in awake rats and WHBP, respectively, in response to peripheral chemoreflex activation. These previous data suggested the involvement of ATP and L-glutamate in the NTS in the processing of the sympathoexcitatory component of the chemoreflex by unknown mechanisms.
View Article and Find Full Text PDFChronic intermittent hypoxia (CIH) in rats produces changes in the central regulation of cardiovascular and respiratory systems by unknown mechanisms. We hypothesized that CIH (6% O(2) for 40 s, every 9 min, 8 h day(-1)) for 10 days alters the central respiratory modulation of sympathetic activity. After CIH, awake rats (n = 14) exhibited higher levels of mean arterial pressure than controls (101 +/- 3 versus 89 +/- 3 mmHg, n = 15, P < 0.
View Article and Find Full Text PDFIn the present study we evaluated the role of ionotropic glutamate receptors and purinergic P2 receptors in the caudal commissural NTS (cNTS) on the modulation of the baseline respiratory frequency (fR), and on the tachypneic response to chemoreflex activation in awake rats. The selective antagonism of ionotropic glutamate receptors with kynurenic acid (2 nmol/50 nl) in the cNTS produced a significant increase in the baseline fR but no changes in the tachypneic response to chemoreflex activation. The selective antagonism of purinergic P2 receptors by PPADS (0.
View Article and Find Full Text PDFIn the present study we evaluated the possible modulatory role of noradrenaline on the neurotransmission of the peripheral chemoreflex afferents in the caudal commissural NTS of awake rats. To reach this goal we performed a dose-response curve to microinjection of increasing dose of noradrenaline into the caudal commissural NTS of awake rats and then the threshold dose, which produces minor changes in the baseline mean arterial pressure, was selected to be used in the chemoreflex experiment. The peripheral chemoreflex was activated with KCN before and after bilateral microinjections of noradrenaline (5 nMol/50 nL, threshold dose) into the NTS.
View Article and Find Full Text PDF