Publications by authors named "Lene N Nejsum"

Inflammation plays a key role in both the onset and progression of various kidney diseases. However, the specific molecular and cellular mechanisms by which inflammation drives kidney diseases from different etiologies remain to be elucidated. To enhance our understanding of these mechanisms, a reliable and translational human model of renal inflammation is needed.

View Article and Find Full Text PDF

Cellular changes in carcinomas include alterations in cell proliferation, cell migration, cell-cell adhesion, and cellular polarity. In vitro studies have revealed that the water channels, aquaporin-1 (AQP1) and AQP3, can influence cell migration and cell-cell adhesion. Of note, we previously showed that AQP1 overexpression reduced levels of cell-cell adhesion proteins, whereas AQP3 increased levels when overexpressed in normal epithelial cells.

View Article and Find Full Text PDF

Antibody-based CD47 blockade aims to activate macrophage phagocytosis of tumor cells. However, macrophages possess a high degree of phenotype heterogeneity that likely influences phagocytic capacity. In murine models, proinflammatory (M1) activation increases macrophage phagocytosis of tumor cells, but in human models, results have been conflicting.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) represents a major public health burden with increasing prevalence. Current therapies focus on delaying CKD progression, underscoring the need for innovative treatments. This necessitates animal models that accurately reflect human kidney pathologies, particularly for studying potential reversibility and regenerative mechanisms, which are often hindered by the progressive and irreversible nature of most CKD models.

View Article and Find Full Text PDF

Acute pyelonephritis (APN) is most frequently caused by uropathogenic (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model.

View Article and Find Full Text PDF

The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration.

View Article and Find Full Text PDF

Alpha-synuclein (aSN) is a membrane-associated and intrinsically disordered protein, well known for pathological aggregation in neurodegeneration. However, the physiological function of aSN is disputed. Pull-down experiments have pointed to plasma membrane Ca -ATPase (PMCA) as a potential interaction partner.

View Article and Find Full Text PDF

Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility.

View Article and Find Full Text PDF

Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism.

View Article and Find Full Text PDF

Aquaporin (AQP) water channels are pivotal to renal water handling and therefore in the regulation of body water homeostasis. However, beyond the kidney, AQPs facilitate water reabsorption and secretion in other cells and tissues, including sweat and salivary glands and the gastrointestinal tract. A growing body of evidence has also revealed that AQPs not only facilitate the transport of water but also the transport of several small molecules and gases such as glycerol, HO, ions and CO.

View Article and Find Full Text PDF

Chronic wounds are defined as wounds that fail to proceed through the normal phases of wound healing; a complex process involving different dynamic events including migration of keratinocytes in the epidermis. Chronic wounds are estimated to affect 1-2% of the human population worldwide and are a major socioeconomic burden. The prevalence of chronic wounds is expected to increase with the rising number of elderly and patients with diabetes and obesity, who are at high risk of developing chronic wounds.

View Article and Find Full Text PDF

Animal and human tissues are used extensively in physiological and pathophysiological research. Due to both ethical considerations and low availability, it is essential to maximize the use of these tissues. Therefore, the aim was to develop a new method allowing for multiplex immunofluorescence (IF) staining of kidney sections in order to reuse the same tissue section multiple times.

View Article and Find Full Text PDF

Sex hormones play an important role in the regulation of water homeostasis, and we have previously shown that tamoxifen (TAM), a selective estrogen receptor modulator (SERM), affects the regulation of aquaporin (AQP)-2. In this study, we investigated the effect of TAM on the expression and localization of AQP3 in collecting ducts using various animal, tissue, and cell models. The impact of TAM on AQP3 regulation was studied in rats subjected to 7 days of unilateral ureteral obstruction (UUO), with the rats fed a lithium-containing diet to induce nephrogenic diabetes insipidus (NDI), as well as in human precision-cut kidney slices (PCKS).

View Article and Find Full Text PDF

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked disease caused by gain-of-function mutations of arginine vasopressin receptor 2 (V2R). Patients with NSIAD are characterized by the inability to excrete a free water load and by inappropriately increased urinary osmolality despite very low levels of plasma vasopressin, resulting in euvolaemic hyponatraemia. To dissect the signalling downstream V2R constitutively active variants, Flp-In T-REx Madin-Darby canine kidney (FTM) cells, stably transfected with V2R mutants (R137L, R137C and F229V) and AQP2-wt or non-phosphorylatable AQP2-S269A/AQP2-S256A, were used as cellular models.

View Article and Find Full Text PDF

Aquaporin (AQP) water channels facilitate water transport across cellular membranes and are essential in regulation of body water balance. Moreover, several AQPs are overexpressed or ectopically expressed in breast cancer. Interestingly, several in vitro studies have suggested that AQPs can affect the response to conventional anticancer chemotherapies.

View Article and Find Full Text PDF

Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence.

View Article and Find Full Text PDF

The water channel aquaporin-5 (AQP5) is essential in transepithelial water transport in secretory glands. AQP5 is ectopically overexpressed in breast cancer, where expression is associated with lymph node metastasis and poor prognosis. Besides the role in water transport, AQP5 has been found to play a role in cancer metastasis, migration, and proliferation.

View Article and Find Full Text PDF

Aim: Renal fibrosis is a major driver of chronic kidney disease, yet current treatment strategies are ineffective in attenuating fibrogenesis. The cyclooxygenase/prostaglandin system plays a key role in renal injury and holds great promise as a therapeutic target. Here, we used a translational approach to evaluate the role of the PGE -EP receptor in the pathogenesis of renal fibrosis in several models of kidney injury, including human (fibrotic) kidney slices.

View Article and Find Full Text PDF

Aim: Aquaporin-2 (AQP2) shuttling between intracellular vesicles and the apical plasma membrane is pivotal in arginine vasopressin-mediated urine concentration and is dysregulated in multiple diseases associated with water balance disorders. Children and adults with acute pyelonephritis have a urinary concentration defect and studies in children revealed increased AQP2 excretion in the urine. This study aimed to analyse AQP2 trafficking in response to acute pyelonephritis.

View Article and Find Full Text PDF

The canonical function of aquaporin (AQP) water channels is to facilitate passive transport of water across cellular membranes making them essential in the regulation of body water homeostasis. Moreover, AQPs, including AQP1, have been found to be overexpressed in multiple cancer types, including breast cancer, where AQP1 overexpression is associated with poor prognosis. AQPs have been shown to affect cellular processes associated with cancer progression and spread including cell migration, angiogenesis, and proliferation.

View Article and Find Full Text PDF

Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions.

View Article and Find Full Text PDF

Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes, including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 (AQP2) localizes to the apical plasma membrane as well as to small, subapical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2-containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration.

View Article and Find Full Text PDF

Introduction: Vaginal colonization with Streptococcus agalactiae (group B streptococci) is hypothesized to constitute a risk factor for preterm prelabor rupture of membranes. In vitro studies have shown that S. agalactiae strains isolated from infants with neonatal sepsis adhere to chorion cells of the human chorioamniotic membrane.

View Article and Find Full Text PDF

Aquaporin (AQP) water channels facilitate passive transport of water across cellular membranes following an osmotic gradient. AQPs are expressed in a multitude of epithelia, endothelia, and other cell types where they play important roles in physiology, especially in the regulation of body water homeostasis, skin hydration, and fat metabolism. AQP dysregulation is associated with many pathophysiological conditions, including nephrogenic diabetes insipidus, chronic kidney disease, and congestive heart failure.

View Article and Find Full Text PDF

Aquaporins (AQPs) are water channels that facilitate transport of water across cellular membranes. AQPs are overexpressed in several cancers. Especially in breast cancer, AQP5 overexpression correlates with spread to lymph nodes and poor prognosis.

View Article and Find Full Text PDF