We present a H Nuclear Magnetic Resonance (NMR) relaxometry experimental investigation of two series of magnetic nanoparticles, constituted of a maghemite core with a mean diameter d = 17 ± 2.5 nm and 8 ± 0.4 nm, respectively, and coated with four different negative polyelectrolytes.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2019
Nanoassemblies encompass a large variety of systems (organic, crystalline, amorphous and porous). The nanometric size enables these systems to interact with biological entities and cellular organelles of similar dimensions (proteins, cells, …). Over the past 20 years, the exploitation of their singular properties as contrast agents has led to the improvement of medical imaging.
View Article and Find Full Text PDFWater dispersible cobalt ferrite nanoparticles, CoFeO₄, of different size (4-10 nm) and various composition (0 ≤ x ≤ 1), functionalized with a rhamnose derivative were obtained and characterized by combining TEM, XRD and elemental analyses techniques. Magnetic properties of these systems were studied by SQUID magnetometry. A particular emphasis was given to the investigation of magnetocrystalline anisotropy and size effect on the heating abilities of the nanoparticles under the application of an alternating magnetic field.
View Article and Find Full Text PDFBright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red-emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen-bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen-bonding drugs like doxorubicin, as shown by steady state and time-resolved measurements.
View Article and Find Full Text PDFThe field of optical bioimaging has considerably flourished with the advent of sophisticated microscopy techniques and ultra-bright fluorescent tools. Fluorescent organic nanoparticles (FONs) have thus recently appeared as very attractive labels for their high payload, absence of cytotoxicity and eventual biodegradation. Nevertheless, their bioconjugation to target specific receptors with high imaging contrast is scarcely performed.
View Article and Find Full Text PDFHigh-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolecular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast.
View Article and Find Full Text PDFSafe implementation of nanotechnology and nanomedicine requires an in-depth understanding of the life cycle of nanoparticles in the body. Here, we investigate the long-term fate of gold/iron oxide heterostructures after intravenous injection in mice. We show these heterostructures degrade in vivo and that the magnetic and optical properties change during the degradation process.
View Article and Find Full Text PDFThe use of nanomaterials drastically increases and yet their behavior in living organisms remains poorly examined. At the same time a better comprehension of the interactions between nanoparticles and the biological environment would allow us to limit potential nanoparticle-based toxicity and fully exploit nanoparticles medical applications. In this perspective, it is high time we develop methods to detect, quantify and follow the evolution of nanoparticles in the complex biological environment, spanning all relevant scales from the nanometer up to the tissue level.
View Article and Find Full Text PDFMagnetic hyperthermia mediated by magnetic nanomaterials is one promising antitumoral nanotherapy, particularly for its ability to remotely destroy deep tumors. More and more new nanomaterials are being developed for this purpose, with improved heat-generating properties in solution. However, although the ultimate target of these treatments is the tumor cell, the heating efficiency, and the underlying mechanisms, are rarely studied in the cellular environment.
View Article and Find Full Text PDFUnderstanding the relation between the structure and the reactivity of nanomaterials in the organism is a crucial step towards efficient and safe biomedical applications. The multi-scale approach reported here, allows following the magnetic and structural transformations of multicore maghemite nanoflowers in a medium mimicking intracellular lysosomal environment. By confronting atomic-scale and macroscopic information on the biodegradation of these complex nanostuctures, we can unravel the mechanisms involved in the critical alterations of their hyperthermic power and their Magnetic Resonance imaging T1 and T2 contrast effect.
View Article and Find Full Text PDFSeveral studies propose nanoparticles for tumor treatment, yet little is known about the fate of nanoparticles and intimate interactions with the heterogeneous and ever-evolving tumor environment. The latter, rich in extracellular matrix, is responsible for poor penetration of therapeutics and represents a paramount issue in cancer therapy. Hence new strategies start aiming to modulate the neoplastic stroma.
View Article and Find Full Text PDFThe long-term fate of nanomaterials in biological environment represents a critical matter, which determines environmental effects and potential risks for human health. Predicting these risks requires understanding of nanoparticle transformations, persistence, and degradation, some issues somehow ignored so far. Safe by design, inorganic nanostructures are being envisioned for therapy, yet fundamental principles of their processing in biological systems, change in physical properties, and in situ degradability have not been thoroughly assessed.
View Article and Find Full Text PDFThe labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure.
View Article and Find Full Text PDFIn the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI T(1) and T(2) contrast effect. Multi-core nanoparticles composed of maghemite cores were synthesized through a polyol approach, and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size and hence magnetic properties.
View Article and Find Full Text PDFIron oxide nanocrystals (IONCs) are appealing heat mediator nanoprobes in magnetic-mediated hyperthermia for cancer treatment. Here, specific absorption rate (SAR) values are reported for cube-shaped water-soluble IONCs prepared by a one-pot synthesis approach in a size range between 13 and 40 nm. The SAR values were determined as a function of frequency and magnetic field applied, also spanning technical conditions which are considered biomedically safe for patients.
View Article and Find Full Text PDFOne of the first biointeractions of magnetic nanoparticles with living systems is characterized by nanoparticle-protein complex formation. The proteins dynamically encompass the particles in the protein corona. Here we propose a method based on nanomagnetism that allows a specific in situ monitoring of interactions between iron oxide nanoparticles and blood plasma.
View Article and Find Full Text PDFSynthesis of functionalized magnetic nanoparticles (NPs) for biomedical applications represents a current challenge. In this paper we present the synthesis and characterization of water-dispersible sugar-coated iron oxide NPs specifically designed as magnetic fluid hyperthermia heat mediators and negative contrast agents for magnetic resonance imaging. In particular, the influence of the inorganic core size was investigated.
View Article and Find Full Text PDFThe autocatalytic sonochemical reaction of Fe(CO)(5) decomposition in [BuMeIm][Tf(2)N] provides iron nanoparticles in higher yields than in tetralin. Such a difference is explained by the higher decomposition of the intermediate Fe(3)(CO)(12) according to the two-sites model of the sonochemical reactions and the specific properties of the ionic liquid.
View Article and Find Full Text PDFWater-soluble biocompatible rhamnose-coated Fe(3)O(4) nanoparticles of 4.0 nm are obtained by covalent anchorage of rhamnose on the nanoparticles surface via a phosphate linker. These nanoparticles present superparamagnetic behavior and nuclear relaxivities in the same order of magnitude as Endorem that make them potential magnetic resonance imaging (MRI) contrast agents of a second generation, where the saccharides represent also specific ligands able to target lectins on skin cells.
View Article and Find Full Text PDF