Publications by authors named "Lena Seyfarth"

Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in mutants, normally encoding the only catalytically active ADAR in , ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of , the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration.

View Article and Find Full Text PDF

Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 () gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4).

View Article and Find Full Text PDF

In this work we tackle the stacking disorder of melon, a layered carbon imide amide polymer with the ideal composition (C(6)N(7)(NH)(NH(2))). Although its existence has been postulated since 1834 the structure of individual melon layers could only recently be solved via electron diffraction and high-resolution (15)N solid-state NMR spectroscopy. With only weak van der Waals interactions between neighboring layers its long range stacking order is poorly defined preventing an efficient use of diffraction techniques.

View Article and Find Full Text PDF

We present an approach for determining the positions of the hydrogen atoms in NH(x) groups of crystalline materials. It is based on a combination of quantum-chemical DFT calculations and quantitative solid-state NMR measurements of N-H and H-H distances. The former provide the alignment of the NHx groups within the crystal structure whereas the latter define their internal geometry.

View Article and Find Full Text PDF

The gas-phase loading of [Zn(4)O(btb)(2)](8) (MOF-177; H(3)btb=1,3,5-benzenetribenzoic acid) with the volatile platinum precursor [Me(3)PtCp'] (Cp'=methylcyclopentadienyl) was confirmed by solid state (13)C magic angle spinning (MAS)-NMR spectroscopy. Subsequent reduction of the inclusion compound [Me(3)PtCp'](4)@MOF-177 by hydrogen at 100 bar and 100 degrees C for 24 h was carried out and gave rise to the formation of platinum nanoparticles in a size regime of 2-5 nm embedded in the unchanged MOF-177 host lattice as confirmed by transmission electron microscopy (TEM) micrographs and powder X-ray diffraction (PXRD). The room-temperature hydrogen adsorption of Pt@MOF-177 has been followed in a gravimetric fashion (magnetic suspension balance) and shows almost 2.

View Article and Find Full Text PDF

When pillaring a well crystalline synthetic hectorite using molecular pillars, we obtained a truly microporous material for the first time that displays long range order of the pillars and consequently a narrow pore size distribution.

View Article and Find Full Text PDF

SrP2N4 was obtained by high-pressure high-temperature synthesis utilizing the multianvil technique (5 GPa, 1400 degrees C) starting from mixtures of phosphorus(V) nitride and strontium azide. SrP2N4 turned out to be isotypic with BaGa(2)O(4) and is closely related to KGeAlO(4). The crystal structure (SrP2N4, a=17.

View Article and Find Full Text PDF

Poly(aminoimino)heptazine, otherwise known as Liebig's melon, whose composition and structure has been subject to multitudinous speculations, was synthesized from melamine at 630 degrees C under the pressure of ammonia. Electron diffraction, solid-state NMR spectroscopy, and theoretical calculations revealed that the nanocrystalline material exhibits domains well-ordered in two dimensions, thereby allowing the structure solution in projection by electron diffraction. Melon ([C(6)N(7)(NH(2))(NH)](n), plane group p2 gg, a=16.

View Article and Find Full Text PDF

The tautomerism of cyameluric acid C6N7O3H3 (1 a), cyamelurates and other heptazine derivatives has recently been studied by several theoretical investigations. In this experimental study we prepared stannyl and silyl derivatives of cyameluric acid (1 a): C6N7O3[Sn(C4H9)3]3 (3 a), C6N7O3[Sn(C2H5)3]3 (3 b), and C6N7O3[Si(CH3)3]3 (4). In order to investigate the structure of 1 a the mono- and dipotassium cyamelurate hydrates K(C6N7O3H2)2 H2O (5) and K2(C6N7O3H)1 H2O (6) were synthesized by UV/Vis-controlled titration of a potassium cyamelurate solution with aqueous hydrochloric acid.

View Article and Find Full Text PDF