The aim of this study was to evaluate the influence of weight ratio, the shape of the precursor particles, and the application of a phosphate-monomer-containing primer on the mechanical properties of polymer infiltrated ceramic networks (PICNs) using zinc oxide. Two different types of zinc oxide particles were used as precursors to produce zinc oxide networks by sintering, each with two different densities resulting in two different weight ratios of the PICNs. For each of these different networks, two subgroups were built: one involving the application of a phosphate-monomer-containing primer prior to the infiltration of Bis-GMA/TEGDMA and one without.
View Article and Find Full Text PDFSolid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-10 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs).
View Article and Find Full Text PDFConversion of light into heat is essential for a broad range of technologies such as solar thermal heating, catalysis and desalination. Three-dimensional (3D) carbon nanomaterial-based aerogels have been shown to hold great promise as photothermal transducer materials. However, until now, their light-to-heat conversion is limited by near-surface absorption, resulting in a strong heat localization only at the illuminated surface region, while most of the aerogel volume remains unused.
View Article and Find Full Text PDFHydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer.
View Article and Find Full Text PDFThe material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid β-Ga O /ZnGa O nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction.
View Article and Find Full Text PDFFucoidans, sulfated polysaccharides from brown algae, possess multiple bioactivities in regard to osteogenesis, angiogenesis, and inflammation, all representing key molecular processes for successful bone regeneration. To utilize fucoidans in regenerative medicine, a delivery system is needed which temporarily immobilizes the polysaccharide at the injured site. Hydrogels have become increasingly interesting biomaterials for the support of bone regeneration.
View Article and Find Full Text PDFGraphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes.
View Article and Find Full Text PDFTetrapodal zinc oxide (t-ZnO) is used to fabricate polymer composites for many different applications ranging from biomedicine to electronics. In recent times, macroscopic framework structures from t-ZnO have been used as a versatile sacrificial template for the synthesis of multi-scaled foam structures from different nanomaterials such as graphene, hexagonal boron nitride or gallium nitride. Many of these fabrication methods rely on wet-chemical coating processes using nanomaterial dispersions, leading to a strong interest in the actual coating mechanism and factors influencing it.
View Article and Find Full Text PDFLocalized therapy of the highly malignant brain tumor glioblastoma multiforme (GBM) could help to drastically improve the treatment efficiency and increase the patient's median survival. Here, a macroscopic PDMS matrix composed of interconnected microchannels for tailored drug release and localized GBM therapy is introduced. Based on a simple bottom-up fabrication method using a highly versatile sacrificial template, the presented strategy solves the scaling problem associated with the previously developed microchannel-based drug delivery systems, which were limited to two dimensions due to the commonly employed top-down microfabrication methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
Despite tremendous efforts toward fabrication of three-dimensional macrostructures of two-dimensional (2D) materials, the existing approaches still lack sufficient control over microscopic (morphology, porosity, pore size) and macroscopic (shape, size) properties of the resulting structures. In this work, a facile fabrication method for the wet-chemical assembly of carbon 2D nanomaterials into macroscopic networks of interconnected, hollow microtubes is introduced. As demonstrated for electrochemically exfoliated graphene, graphene oxide, and reduced graphene oxide, the approach allows for the preparation of highly porous (> 99.
View Article and Find Full Text PDF