Publications by authors named "Lena Miller"

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not clinically validated as an antiviral target. 2-Hydroxyisoquinoline-1,3-dione (HID) is known to confer active site directed inhibition of divalent metal-dependent enzymatic functions, such as HIV RNase H, integrase (IN) and hepatitis C virus (HCV) NS5B polymerase. We report herein the synthesis and biochemical evaluation of a few C-5, C-6 or C-7 substituted HID subtypes as HIV RNase H inhibitors.

View Article and Find Full Text PDF

Targeting the clinically unvalidated reverse transcriptase (RT) associated ribonuclease H (RNase H) for human immunodeficiency virus (HIV) drug discovery generally entails chemotypes capable of chelating two divalent metal ions in the RNase H active site. The hydroxypyridonecarboxylic acid scaffold has been implicated in inhibiting homologous HIV integrase (IN) and influenza endonuclease via metal chelation. We report herein the design, synthesis, and biological evaluations of a novel variant of the hydroxypyridonecarboxylic acid scaffold featuring a crucial N-1 benzyl or biarylmethyl moiety.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains an unvalidated antiviral target. A major challenge of specifically targeting HIV RNase H arises from the general lack of selectivity over RT polymerase (pol) and integrase (IN) strand transfer (ST) inhibitions. We report herein the synthesis and biochemical evaluations of three novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes carefully designed to achieve selective RNase H inhibition.

View Article and Find Full Text PDF

Reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current chemotherapy against human immunodeficiency virus (HIV). Although numerous chemotypes have been reported to inhibit HIV RNase H biochemically, few show significant antiviral activity against HIV. We report herein the design, synthesis, and biological evaluations of a novel variant of 2-hydroxyisoquinoline-1,3-dione (HID) scaffold featuring a crucial C-6 benzyl or biarylmethyl moiety.

View Article and Find Full Text PDF

HIV-1 reverse transcriptase is a bifunctional enzyme, having both DNA polymerase (RNA- and DNA-dependent) and ribonuclease H activities. HIV-1 reverse transcriptase has been an exceptionally important target for antiretroviral therapeutic development, and nearly half of the current clinically used antiretrovirals target reverse transcriptase DNA polymerase. However, no inhibitors of reverse transcriptase ribonuclease H are on the market or in preclinical development.

View Article and Find Full Text PDF