Surgery triggers a systemic inflammatory response that ultimately impacts the brain and associates with long-term cognitive impairment. Adequate regulation of this immune surge is pivotal for a successful surgical recovery. We explored the temporal immune response in a surgical cohort and its associations with neuroimmune regulatory pathways and cognition, in keeping with the growing body of evidence pointing towards the brain as a regulator of peripheral inflammation.
View Article and Find Full Text PDFExtracellular HMGB1 acts as an alarmin in multiple autoimmune diseases. While its release and functions have been extensively studied, there is a substantial lack of knowledge regarding HMGB1 regulation at the site of inflammation. Herein we show that enzymes present in arthritis-affected joints process HMGB1 into smaller peptides .
View Article and Find Full Text PDFBackground: Neuroinflammation triggered by infection or trauma is the cause of central nervous system dysfunction. High-mobility group box 1 protein (HMGB1), released from stressed and dying brain cells, is a potent neuroinflammatory mediator. The proinflammatory functions of HMGB1 are tightly regulated by post-translational redox modifications, and we here investigated detailed neuroinflammatory responses induced by the individual redox isoforms.
View Article and Find Full Text PDFUnlabelled: Acetaminophen (APAP) overdoses are of major clinical concern. Growing evidence underlines a pathogenic contribution of sterile postinjury inflammation in APAP-induced acute liver injury (APAP-ALI) and justifies development of anti-inflammatory therapies with therapeutic efficacy beyond the therapeutic window of the only current treatment option, N-acetylcysteine (NAC). The inflammatory mediator, high mobility group box 1 (HMGB1), is a key regulator of a range of liver injury conditions and is elevated in clinical and preclinical APAP-ALI.
View Article and Find Full Text PDFAims: Pathogenic effects of the endogenous inflammatory mediator high mobility group box protein 1 (HMGB1) have been described in several inflammatory diseases. Recent reports have underlined the importance of post-translational modifications (PTMs) in determination of HMGB1 function and release mechanisms. We investigated the occurrence of PTMs of HMGB1 obtained from synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients.
View Article and Find Full Text PDFThe nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators.
View Article and Find Full Text PDFHigh mobility group box chromosomal protein 1 (HMGB1) is a DNA-binding nuclear protein that can be released from dying cells and activated myeloid cells. Extracellularly, HMGB1 promotes inflammation. Experimental studies demonstrate HMGB1 to be a pathogenic factor in many inflammatory conditions including arthritis.
View Article and Find Full Text PDFObjective: High mobility group box chromosomal protein 1 (HMGB-1) is a DNA binding nuclear protein that can be released from dying cells and activated myeloid cells. Extracellularly, HMGB-1 promotes inflammation. Clinical and experimental studies demonstrate that HMGB-1 is a pathogenic factor in chronic arthritis.
View Article and Find Full Text PDFThe nuclear protein HMGB1 has previously been demonstrated to act as an alarmin and to promote inflammation upon extracellular release, yet its mode of action is still not well defined. Access to highly purified HMGB1 preparations from prokaryotic and eukaryotic sources enabled studies of activation of human PBMC or synovial fibroblast cultures in response to HMGB1 alone or after binding to cofactors. HMGB1 on its own could not induce detectable IL-6 production.
View Article and Find Full Text PDFRetinoids modulate cell proliferation, differentiation and apoptosis in a variety of tumour cells including leukaemia and neuroblastoma, a childhood tumour of the sympathetic nervous system. 13-cis retinoic acid is in clinical use against minimal residual disease in neuroblastoma, where the effect seems to depend on dose, scheduling and tumour mass. Novel retinoids are searched for, to improve potency and lower toxicity.
View Article and Find Full Text PDF