The ongoing SARS-CoV-2 pandemic demonstrates that the capacity of centralized clinical diagnosis laboratories represents a significant limiting factor in the global fight against the newly emerged virus. Scaling up these capacities also requires simple and robust methods for virus diagnosis to be easily driven by untrained personnel in a point-of-care (POC) environment. The use of impedance sensors reduces the complexity and costs of diagnostic instruments and increases automation of diagnosis processes.
View Article and Find Full Text PDFPolyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15-20 wt%) and P(VDF-TrFE) (10-20 wt%) scaffolds.
View Article and Find Full Text PDFPotato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV).
View Article and Find Full Text PDF