Publications by authors named "Lena Fragner"

Drought is one of the major constraints limiting chickpea productivity. To unravel complex mechanisms regulating drought response in chickpea, we generated transcriptomics, proteomics, and metabolomics datasets from root tissues of four contrasting drought-responsive chickpea genotypes: ICC 4958, JG 11, and JG 11+ (drought-tolerant), and ICC 1882 (drought-sensitive) under control and drought stress conditions. Integration of transcriptomics and proteomics data identified enriched hub proteins encoding isoflavone 4'-O-methyltransferase, UDP-d-glucose/UDP-d-galactose 4-epimerase, and delta-1-pyrroline-5-carboxylate synthetase.

View Article and Find Full Text PDF

Unlabelled: Roots secrete a vast array of low molecular weight compounds into the soil broadly referred to as root exudates. It is a key mechanism by which plants and soil microbes interact in the rhizosphere. The effect of drought stress on the exudation process and composition is rarely studied, especially in cereal crops.

View Article and Find Full Text PDF

Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive neurodegenerative disease caused by mutations in the pantothenate kinase 2 (PANK2) gene and associated with iron deposition in basal ganglia. Pantothenate kinase isoforms catalyze the first step in coenzyme A (CoA) biosynthesis. Since PANK2 is the only isoform in erythrocytes, these cells are an excellent ex vivo model to study the effect of PANK2 point mutations on expression/stability and activity of the protein as well as on the downstream molecular consequences.

View Article and Find Full Text PDF

A novel bacterium, designated strain Msb3, was recently isolated from leaves of the yam family plant (). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that this strain belonged to the genus with as nearest validly named neighbour taxon (99.3 % sequence similarity towards the type strain).

View Article and Find Full Text PDF

Root-microbe interaction and its specialized root nodule structures and functions are well studied. In contrast, leaf nodules harboring microbial endophytes in special glandular leaf structures have only recently gained increased interest as plant-microbe phyllosphere interactions. Here, we applied a comprehensive metabolomics platform in combination with natural product isolation and characterization to dissect leaf and leaf nodule metabolism and functions in (Primulaceae) and (Rubiaceae).

View Article and Find Full Text PDF

The genus includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel isolate, a permanent and predominant member of the (yam family, ) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.

View Article and Find Full Text PDF
Article Synopsis
  • mTORC1 is a key regulator of macrophage functions, affecting their growth and metabolism, but its exact biochemical processes are still being explored.
  • The study uses a multiomics approach combined with a modeling technique called COVRECON to find a key biochemical factor that impacts mTORC1-related metabolic profiles in macrophages.
  • Tsc2, which inhibits mTORC1, is shown to control the enzyme phosphoglycerate dehydrogenase (Phgdh), revealing its crucial role in macrophage activity and metabolism, particularly influenced by different stimuli like LPS and IL-4.
View Article and Find Full Text PDF

Shifts in the duration and intensity of ambient temperature impair plant development and reproduction, particularly male gametogenesis. Stress exposure causes meiotic defects or premature spore abortion in male reproductive organs, leading to male sterility. However, little is known about the mechanisms underlying stress and male sterility.

View Article and Find Full Text PDF

Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three elevation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum. We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO ) release to the atmosphere.

View Article and Find Full Text PDF

Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of samples induced by environmental fluctuations.

View Article and Find Full Text PDF

Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases.

View Article and Find Full Text PDF

Fatty acid methyl ester analysis (FAME) by gas chromatography coupled to mass spectrometry (GC-MS) is a widely used technique in biodiesel/bioproduct (e.g. poly-unsaturated fatty acids, PUFA) research but typically does not allow distinguishing between bound and free fatty acids.

View Article and Find Full Text PDF

Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle.

View Article and Find Full Text PDF

Flavescence dorée, caused by the quarantine phytoplasma FDp, represents the most devastating of the grapevine yellows diseases in Europe. In an integrated study we have explored the FDp-grapevine interaction in infected grapevines of cv. "Modra frankinja" under natural conditions in the vineyard.

View Article and Find Full Text PDF

Theobroma cacao and its popular product, chocolate, are attracting attention due to potential health benefits including antioxidative effects by polyphenols, anti-depressant effects by high serotonin levels, inhibition of platelet aggregation and prevention of obesity-dependent insulin resistance. The development of cacao seeds during fruit ripening is the most crucial process for the accumulation of these compounds. In this study, we analyzed the primary and the secondary metabolome as well as the proteome during Theobroma cacao cv.

View Article and Find Full Text PDF

Potato production is one of the most important agricultural sectors, and it is challenged by various detrimental factors, including virus infections. To control losses in potato production, knowledge about the virus-plant interactions is crucial. Here, we investigated the molecular processes in potato plants as a result of Potato virus Y (PVY) infection, the most economically important potato viral pathogen.

View Article and Find Full Text PDF

Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure.

View Article and Find Full Text PDF

Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood.

View Article and Find Full Text PDF

Bird pollination has evolved repeatedly among flowering plants but is almost exclusively characterized by passive transfer of pollen onto the bird and by nectar as primary reward [1, 2]. Food body rewards are exceedingly rare among eudicot flowering plants and are only known to occur on sterile floral organs [3]. In this study, we report an alternative bird pollination mechanism involving bulbous stamen appendages in the Neotropical genus Axinaea (Melastomataceae).

View Article and Find Full Text PDF

Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P.

View Article and Find Full Text PDF

High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix, thereby linking computer-based genome-scale metabolic reconstruction and in vivo metabolic dynamics.

View Article and Find Full Text PDF

The enzyme myo-inositol oxygenase is the key enzyme of a pathway leading from myo-inositol to UDP-glucuronic acid. In Arabidopsis, myo-inositol oxygenase is encoded by four genes. All genes are strongly expressed in syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots.

View Article and Find Full Text PDF

In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively.

View Article and Find Full Text PDF

L. (Rosaceae) is known for its beneficial effects of prevention of pre-menstrual syndrome (PMS). For this reason is processed into many food supplements and pharmaceutical preparations.

View Article and Find Full Text PDF