TRPM8 is a Ca-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation.
View Article and Find Full Text PDFRadiation is a highly efficient therapy in squamous head and neck carcinoma (HNSCC) treatment. However, local recurrence and metastasis are common complications. Recent evidence shows that cancer-cell-derived exosomes modify tumour cell movement and metastasis.
View Article and Find Full Text PDFK channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K channels. The upregulation of highly "oncogenic" K channels such as the Ca-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells.
View Article and Find Full Text PDFInfiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels.
View Article and Find Full Text PDF