Publications by authors named "Lena Du"

The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.

View Article and Find Full Text PDF

Device-scale, uniform, and controllable deposition of nanoparticles on various substrates is fundamentally important not only for the fabrication of thin-film devices but also for the large sample statistics of single-particle performances. However, it is challenging to obtain such predefined depositions using a simple and efficient method. Here, we present a novel strategy for obtaining the uniform and particle density/spacing-tunable deposition of nanorods on a linker-free substrate.

View Article and Find Full Text PDF

Layered two-dimensional (2D) materials often display unique functionalities for flexible 2D optoelectronic device applications involving natural flexibility and tunable bandgap by bandgap engineering. Composition manipulation by alloying of these 2D materials represents an effective way in fulfilling bandgap engineering, which is particularly true for SnS Se alloys showing a continuous bandgap modulation from 2.1 eV for SnS to 1.

View Article and Find Full Text PDF

Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns.

View Article and Find Full Text PDF