Verbal memory impairment in schizophrenia is associated with abnormalities in gamma-aminobutyric acid (GABA)-ergic and brain-derived neurotrophic factor (BDNF) systems. Recent evidence from animal and clinical studies that adding fluvoxamine to antipsychotics alters the expression of transcripts encoding for the GABA-A receptor and BDNF led us to postulate that fluvoxamine augmentation may improve memory in schizophrenia. To test this, we examined the effect of add-on fluvoxamine on verbal memory and other cognitive functions and related it to the expression of mRNA coding for the GABA-A receptor and BDNF in peripheral mononuclear cells (PMC) of schizophrenic patients.
View Article and Find Full Text PDFIntroduction: The combination of selective serotonin reuptake inhibitor (SSRI) antidepressants and antipsychotics is currently used for the treatment of negative symptoms of schizophrenia. However, the biochemical mechanism mediating the clinical effectiveness of this treatment remains obscure. Previously, we have reported that acute haloperidol (HALO)-fluvoxamine (FLU) in vivo and in vitro treatment regulated GABA-Aβ2/3 receptor subunits, and protein kinase C (PKC) and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathways.
View Article and Find Full Text PDFClinical studies have shown that negative symptoms of schizophrenia unresponsive to antipsychotic given alone can improve after augmentation with SSRI antidepressant. Laboratory investigations into the mechanism of this synergism showed that co-administration of SSRI and antipsychotic produces changes in GABA(A) receptor and related systems, which differ from the effects of each drug alone. To examine the clinical relevance of these findings, the current study examined the effects of SSRI augmentation treatment on GABA(A) receptor and related systems in schizophrenia patients.
View Article and Find Full Text PDFThere is evidence that combining selective serotonin reuptake inhibitor (SSRI) antidepressant and antipsychotic drugs may improve negative symptoms in schizophrenia and resistant symptoms in obsessive-compulsive and affective disorders. To examine the mechanism of action of this treatment we investigated the molecular modulation of γ-aminobutyric acid-A (GABA(A)) receptor components and biochemical pathways associated with GABA(A) receptor function following administration of the SSRI fluvoxamine (Flu) combined with the first-generation antipsychotic haloperidol (Hal) and compared it to the individual drugs and the atypical antipsychotic clozapine (Clz). We analysed prefrontal cortices of Sprague-Dawley rats injected intraperitoneally (i.
View Article and Find Full Text PDFMany patients suffering from major psychiatric disorders do not respond adequately to monotherapy and require additional drugs. To date, there are no objective guidelines for deciding which combination may be effective, and the choice is based on previous clinical experience and on trial and error. Even when combination drugs are effective, the biochemical mechanisms responsible for the value-added effect are unknown.
View Article and Find Full Text PDFIt has been shown that the atypical antipsychotic drug clozapine increases the levels of the neurosteroid allopregnanolone in the rat brain. The 18 kDa translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, has been demonstrated to be involved in the process of steroid biosynthesis, in peripheral steroidogenic tissues as well as in glia cells in the brain. In the current study, we investigated the influence of chronic treatment with clozapine and other antipsychotics (thioridazine,sulpiride and risperidone) on TSPO binding in cell cultures and rat tissues.
View Article and Find Full Text PDF