Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, , we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases.
View Article and Find Full Text PDFMammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 () to selectively target MST3/4.
View Article and Find Full Text PDFMacrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, , we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases.
View Article and Find Full Text PDFBromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound.
View Article and Find Full Text PDFMST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling is mediated by transmembrane protein kinases that form heterotetramers consisting of type-I and type-II receptors. Upon BMP binding, the constitutively active type-II receptors activate specific type-I receptors by transphosphorylation, resulting in the phosphorylation of SMAD effector proteins. Drug discovery in the receptor tyrosine kinase-like (TKL) family has largely focused on type-I receptors, with few inhibitors that have been published targeting type-II receptors.
View Article and Find Full Text PDFSenile plaques consisting of amyloid-beta (Aβ) peptides are a major pathological hallmark of Alzheimer's disease (AD). Aβ peptides are heterogeneous regarding the exact length of their amino- and carboxy-termini. Aβ1-40 and Aβ1-42 are often considered to represent canonical "full-length" Aβ species.
View Article and Find Full Text PDFSalt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9.
View Article and Find Full Text PDFWell-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary.
View Article and Find Full Text PDFThe PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to -myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis.
View Article and Find Full Text PDFModulation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling is a promising method of treating autoimmune diseases, and the profound potency of clinical compounds makes this mode of action particularly attractive. Other questions that remain unanswered also include: What is the ideal selectivity between JAK1 and JAK3? Which cells are most relevant to JAK blockade? And what is the ideal tissue distribution pattern for addressing specific autoimmune conditions? We hypothesized that JAK3 selectivity is most relevant to low-dose clinical effects and interleukin-10 (IL-10) stimulation in particular, that immune cells are the most important compartment, and that distribution to inflamed tissue is the most important pharmacokinetic characteristic for disease modification. To test these hypotheses, we prepared modified derivatives of JAK3 specific inhibitors that target C909 near the ATP binding site based on FM-381, first reported in 2016; a compound class that was hitherto limited in uptake and exposure .
View Article and Find Full Text PDFE3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options.
View Article and Find Full Text PDFSerine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet.
View Article and Find Full Text PDFSerine/threonine-protein kinases 3 and 4 (STK3 and STK4, respectively) are key components of the Hippo signaling pathway, which regulates cell proliferation and death and provides a potential therapeutic target for acute myeloid leukemia (AML). Herein, we report the structure-based design of a series of pyrrolopyrimidine derivatives as STK3 and STK4 inhibitors. In an initial screen, the compounds exhibited low nanomolar potency against both STK3 and STK4.
View Article and Find Full Text PDFThis protocol is used to profile the engagement of kinase inhibitors across nearly 200 kinases in a live-cell context. This protocol utilizes one single kinase tracer (NanoBRET(TM) Tracer K10) that operates quantitatively at four different concentrations. Minimizing the number of tracers offers a significant workflow improvement over the previous protocol that utilized a combination of 6 tracers.
View Article and Find Full Text PDFSalt-inducible kinases (SIKs) are key metabolic regulators. The imbalance in SIK function is associated with the development of diverse cancers, including breast, gastric, and ovarian cancers. Chemical tools to clarify the roles of SIK in different diseases are, however, sparse and are generally characterized by poor kinome-wide selectivity.
View Article and Find Full Text PDFChronic inflammation-related diseases are characterized by persistent leukocyte infiltration into the underlying tissue. The vascular endothelium plays a major role in this pathophysiological condition. Only few therapeutic strategies focus on the vascular endothelium as a major target for an anti-inflammatory approach.
View Article and Find Full Text PDFThe transforming growth factor beta-receptor I/activin receptor-like kinase 5 (TGFBR1/ALK5) and its close homologue ALK4 are receptor protein kinases associated with the development of diverse diseases, including cancer, fibrosis, heart diseases, and dysfunctional immune response. Therefore, ALK4/5 are among the most studied kinases, and several inhibitors have been developed. However, current commercially available inhibitors either lack selectivity or have not been comprehensively characterized, limiting their value for studying ALK4/5 function in cellular systems.
View Article and Find Full Text PDFVolatiles are efficient mediators of chemical communication acting universally as attractant, repellent or warning signal in all kingdoms of life. Beside this broad impact volatiles have in nature, scents are also widely used in pharmaceutical, food and cosmetic industries, so the identification of new scents is of great industrial interest. Despite this importance as well as the vast number and diversity of volatile compounds, there is currently no comprehensive public database providing information on structure and chemical classification of volatiles.
View Article and Find Full Text PDF