Publications by authors named "Lemonia-Christina Fengou"

In this study, a large amount of heterogeneous data (i.e., microbiological, spectral and Next Generation Sequencing data) were obtained analyzing mussels of different species and origin, to acquire a comprehensive view about the quality and safety of these products.

View Article and Find Full Text PDF

Monitoring food quality throughout the supply chain in a rapid and cost-effective way allows on-time decision-making, reducing food waste, and increasing sustainability. A portable multispectral imaging sensor was used for the rapid prediction of microbiological quality of fish fillets. Seabream fillets, packaged either in aerobic or vacuum conditions, were collected from both aquaculture and retail stores, while images were also acquired both from the skin and the flesh side of the fish fillets.

View Article and Find Full Text PDF

Spectroscopic sensor imaging of food samples meta-processed by deep machine learning models can be used to assess the quality of the sample. This article presents an architecture for estimating microbial populations in meat samples using multispectral imaging and deep convolutional neural networks. The deep learning models operate on embedded platforms and not offline on a separate computer or a cloud server.

View Article and Find Full Text PDF

The objective of this study was to assess the potential to predict the microbial beef spoilage indicators by Raman and Fourier transform infrared (FT-IR) spectroscopies. Vacuum skin packaged (VSP) beef steaks were stored at 0 °C, 4 °C, 8 °C and under a dynamic temperature condition (0 °C ∼ 4 °C ∼ 8 °C, for 36 d). Total viable count (TVC) and total volatile basic nitrogen (TVB-N) were obtained during the storage period along with spectroscopic data.

View Article and Find Full Text PDF

The rapid assessment of the microbiological quality of highly perishable food commodities is of great importance. Spectroscopic data coupled with machine learning methods have been investigated intensively in recent years, because of their rapid, non-destructive, eco-friendly qualities and their potential to be used on-, in- or at-line. In the present study, the microbiological quality of chicken burgers was evaluated using Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) in tandem with machine learning algorithms.

View Article and Find Full Text PDF

Based on both new and previously utilized experimental data, the present study provides a comparative assessment of sensors and machine learning approaches for evaluating the microbiological spoilage of ready-to-eat leafy vegetables (baby spinach and rocket). Fourier-transform infrared (FTIR), near-infrared (NIR), visible (VIS) spectroscopy and multispectral imaging (MSI) were used. Two data partitioning approaches and two algorithms, namely partial least squares regression and support vector regression (SVR), were evaluated.

View Article and Find Full Text PDF

Minced meat is a vulnerable to adulteration food commodity because species- and/or tissue-specific morphological characteristics cannot be easily identified. Hence, the economically motivated adulteration of minced meat is rather likely to be practiced. The objective of this work was to assess the potential of spectroscopy-based sensors in detecting fraudulent minced meat substitution, specifically of (i) beef with bovine offal and (ii) pork with chicken (and vice versa) both in fresh and frozen-thawed samples.

View Article and Find Full Text PDF

Spectroscopic and imaging methods coupled with multivariate data analysis have been increasingly studied for the assessment of food quality. The objective of this work was the estimation of microbiological quality of minced pork using non-invasive spectroscopy-based sensors. For this purpose, minced pork patties were stored aerobically at different isothermal (4, 8, and 12 °C) and dynamic temperature conditions, and at regular time intervals duplicate samples were subjected to (i) microbiological analyses, (ii) Fourier transform infrared (FTIR) and visible (VIS) spectroscopy measurements, and (iii) multispectral image (MSI) acquisition.

View Article and Find Full Text PDF

The objective of the present study was the evaluation of Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI), in tandem with multivariate data analysis, as means of estimating the microbiological quality of sea bream. Farmed whole ungutted fish were stored aerobically at 0, 4 and 8 °C. At regular time intervals, fish samples (i.

View Article and Find Full Text PDF