Background: Motion correction (MC) is critical for accurate quantification of myocardial blood flow (MBF) and flow reserve (MFR) from F-flurpiridaz positron emission tomography (PET) myocardial perfusion imaging (MPI). However, manual correction is time consuming and introduces inter-observer variability. We aimed to validate an automatic MC algorithm for F-flurpiridaz PET-MPI in terms of diagnostic performance for predicting coronary artery disease (CAD).
View Article and Find Full Text PDFThe Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) has been expanded to include more patients and CT attenuation correction imaging. We present the design and initial results from the updated registry. The updated REFINE SPECT is a multicenter, international registry with clinical data and image files.
View Article and Find Full Text PDFBackground Incidental extrapulmonary findings are commonly detected on chest CT scans and can be clinically important. Purpose To integrate artificial intelligence (AI)-based segmentation for multiple structures, coronary artery calcium (CAC), and epicardial adipose tissue with automated feature extraction methods and machine learning to detect extrapulmonary abnormalities and predict all-cause mortality (ACM) in a large multicenter cohort. Materials and Methods In this post hoc analysis, baseline chest CT scans in patients enrolled in the National Lung Screening Trial (NLST) from August 2002 to September 2007 were included from 33 participating sites.
View Article and Find Full Text PDFCompetition between life science companies is critical to ensure innovative therapies are efficiently developed. Anticompetitive behavior may harm scientific progress and, ultimately, patients. One well-established category of anticompetitive behavior is the 'interlocking directorate'.
View Article and Find Full Text PDFHeart failure (HF) is a leading cause of morbidity and mortality in the United States and worldwide, with a high associated economic burden. This study aimed to assess whether artificial intelligence models incorporating clinical, stress test, and imaging parameters could predict hospitalization for acute HF exacerbation in patients undergoing SPECT/CT myocardial perfusion imaging. The HF risk prediction model was developed using data from 4,766 patients who underwent SPECT/CT at a single center (internal cohort).
View Article and Find Full Text PDFMotion correction (MC) affects myocardial blood flow (MBF) measurements in Rb PET myocardial perfusion imaging (MPI); however, frame-by-frame manual MC of dynamic frames is time-consuming. This study aims to develop an automated MC algorithm for time-activity curves used in compartmental modeling and compare the predictive value of MBF with and without automated MC for significant coronary artery disease (CAD). In total, 565 patients who underwent PET-MPI were considered.
View Article and Find Full Text PDFBackground: On July 1st, 2021, the University of Colorado Hospital (UCH) implemented new sedation protocols in the luminal gastrointestinal (GI) suite. GI proceduralist supervised, Nurse Administered Sedation with fentanyl, midazolam, and diphenhydramine (NAS) sedation was transitioned to Monitored Anesthesia Care with propofol under physician anesthesiologist supervision (MAC).
Objective: To determine if there are statistically significant reductions in Sedation-Start to Scope-In time (SSSI) when using Monitored Anesthesia Care with propofol (MAC) versus Nurse Administered Sedation with fentanyl, midazolam, and diphenhydramine (NAS).
Eur J Nucl Med Mol Imaging
February 2024
Purpose: This study aimed to compare the predictive value of CT attenuation-corrected stress total perfusion deficit (AC-sTPD) and non-corrected stress TPD (NC-sTPD) for major adverse cardiac events (MACE) in obese patients undergoing cadmium zinc telluride (CZT) SPECT myocardial perfusion imaging (MPI).
Methods: The study included 4,585 patients who underwent CZT SPECT/CT MPI for clinical indications (chest pain: 56%, shortness of breath: 13%, other: 32%) at Yale New Haven Hospital (age: 64 ± 12 years, 45% female, body mass index [BMI]: 30.0 ± 6.
We investigated the prognostic utility of visually estimated coronary artery calcification (VECAC) from low dose computed tomography attenuation correction (CTAC) scans obtained during SPECT/CT myocardial perfusion imaging (MPI), and assessed how it compares to coronary artery calcifications (CAC) quantified by calcium score on CTACs (QCAC). From the REFINE SPECT Registry 4,236 patients without prior coronary stenting with SPECT/CT performed at a single center were included (age: 64 ± 12 years, 47% female). VECAC in each coronary artery (left main, left anterior descending, circumflex, and right) were scored separately as 0 (absent), 1 (mild), 2 (moderate), or 3 (severe), yielding a possible score of 0-12 for each patient (overall VECAC grade zero:0, mild:1-2, moderate: 3-5, severe: >5).
View Article and Find Full Text PDFBackground: Assessment of coronary artery calcium (CAC) by computed tomographic (CT) imaging provides an accurate measure of atherosclerotic burden. CAC is also visible in computed tomographic attenuation correction (CTAC) scans, always acquired with cardiac positron emission tomographic (PET) imaging.
Objectives: The aim of this study was to develop a deep-learning (DL) model capable of fully automated CAC definition from PET CTAC scans.
Proc SPIE Int Soc Opt Eng
April 2022
Low-dose ungated CT attenuation correction (CTAC) scans are commonly obtained with SPECT/CT myocardial perfusion imaging. Despite the characteristically low image quality of CTAC, deep learning (DL) can potentially quantify coronary artery calcium (CAC) from these scans in an automatic manner. We evaluated CAC quantification derived with a DL model, including correlation with expert annotations and associations with major adverse cardiovascular events (MACE).
View Article and Find Full Text PDFBackground: Machine learning (ML) has been previously applied for prognostication in patients undergoing SPECT myocardial perfusion imaging (MPI). We evaluated whether including attenuation CT coronary artery calcification (CAC) scoring improves ML prediction of major adverse cardiovascular events (MACE) in patients undergoing SPECT/CT MPI.
Methods: From the REFINE SPECT Registry 4770 patients with SPECT/CT performed at a single center were included (age: 64 ± 12 years, 45% female).
To improve diagnostic accuracy, myocardial perfusion imaging (MPI) SPECT studies can use CT-based attenuation correction (AC). However, CT-based AC is not available for most SPECT systems in clinical use, increases radiation exposure, and is impacted by misregistration. We developed and externally validated a deep-learning model to generate simulated AC images directly from non-AC (NC) SPECT, without the need for CT.
View Article and Find Full Text PDFPurpose: We sought to evaluate inter-scan and inter-reader agreement of coronary calcium (CAC) scores obtained from dedicated, ECG-gated CAC scans (standard CAC scan) and ultra-low-dose, ungated computed tomography attenuation correction (CTAC) scans obtained routinely during cardiac PET/CT imaging.
Methods: From 2928 consecutive patients who underwent same-day Rb cardiac PET/CT and gated CAC scan in the same hybrid PET/CT scanning session, we have randomly selected 200 cases with no history of revascularization. Standard CAC scans and ungated CTAC scans were scored by two readers using quantitative clinical software.
Background: We hypothesized early post-stress left ventricular ejection fraction reserve (EFR) on solid-state-SPECT is associated with major cardiac adverse events (MACE).
Methods: 151 patients (70 ± 12 years, male 50%) undergoing same-day rest/regadenoson stress Tc-sestamibi solid-state SPECT were followed for MACE. Rest imaging was performed in the upright and supine positions.