Understanding what drives protein abundance is essential to biology, medicine, and biotechnology. Driven by evolutionary selection, an amino acid sequence is tailored to meet the required abundance of a proteome, underscoring the intricate relationship between sequence and functional demand. Yet, the specific role of amino acid sequences in determining proteome abundance remains elusive.
View Article and Find Full Text PDFFunctional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
July 2023
Context: Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses.
Objective: Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge.
The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1).
View Article and Find Full Text PDFThe rapid rise of monkeypox (MPX) cases outside previously endemic areas prompts for a better understanding of the disease. We studied the plasma proteome of a group of MPX patients with a similar infection history and clinical manifestation typical for the current outbreak. We report that MPX in this case series is associated with a strong plasma proteomic response among nutritional and acute phase response proteins.
View Article and Find Full Text PDFBackground: Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can help optimise resource allocation, support treatment decisions, and accelerate the development and evaluation of new therapies.
Methods: We developed a multiplexed proteomics assay for determining disease severity and prognosis in COVID-19. The assay quantifies up to 50 peptides, derived from 30 known and newly introduced COVID-19-related protein markers, in a single measurement using routine-lab compatible analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM).
The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers.
View Article and Find Full Text PDFThe water-soluble chlorophyll-binding protein (WSCP) is assumed to be not a part of the photosynthetic process. Applying molecular dynamics (MD) simulations, we aimed to obtain insight into the exceptional stability of WSCP. We analyzed dynamical features such as the hydrogen bond network, flexibility, and force distributions.
View Article and Find Full Text PDFRead-across and grouping is one of the most commonly used alternative approaches for data gap filling in registrations submitted under the REACH Regulation as defined by the European Chemicals Agency (ECHA) in their 'Read-Across Assessment Framework' (RAAF, 2017). At the same time, the application of read-across is rejected by ECHA frequently due to various reasons. As a major reason hereof, applicants fail to reduce the level of 'remaining uncertainty' intrinsical to every read-across approach compared to testing a substance experimentally.
View Article and Find Full Text PDFCyclization and selected backbone N-methylations are found to be often necessary but not sufficient conditions for peptidic drugs to have a good bioavailability. Thus, the design of cyclic peptides with good passive membrane permeability and good solubility remains a challenge. The backbone scaffold of a recently published series of cyclic decapeptides with six selected backbone N-methylations was designed to favor the adoption of a closed conformation with β-turns and four transannular hydrogen bonds.
View Article and Find Full Text PDFMany drugs that are applied in anticancer therapy such as the anthracycline doxorubicin contain DNA-intercalating 9,10-anthraquinone (AQ) moieties. When Cu(II) cyclen complexes were functionalized with up to three (2-anthraquinonyl)methyl substituents, they efficiently inhibited DNA and RNA synthesis resulting in high cytotoxicity (selective for cancer cells) accompanied by DNA condensation/aggregation phenomena. Molecular modeling suggests an unusual bisintercalation mode with only one base pair between the two AQ moieties and the metal complex as a linker.
View Article and Find Full Text PDFThe broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations.
View Article and Find Full Text PDFThe core-set approach is a discretization method for Markov state models of complex molecular dynamics. Core sets are disjoint metastable regions in the conformational space, which need to be known prior to the construction of the core-set model. We propose to use density-based cluster algorithms to identify the cores.
View Article and Find Full Text PDFRegul Toxicol Pharmacol
November 2016
New technologies, such as metabolomics, can address chemical grouping and read across from a biological perspective. In a virtual case study, we selected MCPP as target substance and MCPA and 2,4-DP as source substances with the goal to waive a 90-day study with MCPP. In order to develop a convincing case to show how biological data can substantiate read across, we used metabolomics on blood samples from the 28-day studies to show the qualitative and quantitative similarity of the substances.
View Article and Find Full Text PDFBrevibacterium epidermidis is a major component of the bacterial flora of certain skin surface biotopes, characterized by a comparatively high pH-value. The presence of Brevibacterium epidermidis seems to be linked to the production of malodour. Skin surface pH has been found to be a major factor of bacterial growth on the skin.
View Article and Find Full Text PDF