Publications by authors named "Lemell C"

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region ( ≈ 100 eV) of the band structure.

View Article and Find Full Text PDF

We present a first qualitative description of the atomic dynamics in two-dimensional (2D) materials induced by the impact of slow, highly charged ions. We employ a classical molecular dynamics simulation for the motion of the target atoms combined with a Monte Carlo model for the diffusive charge transport within the layer. Depending on the velocity of charge transfer (hopping time or hole mobility) and the number of extracted electrons which, in turn, depends on the charge state of the impinging ions, we find regions of stability of the 2D structure as well as parameter combinations for which nanopore formation due to Coulomb repulsion is predicted.

View Article and Find Full Text PDF

Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond.

View Article and Find Full Text PDF

The sub-cycle interaction of light and matter is one of the key frontiers of inquiry made accessible by attosecond science. Here, we show that when light excites a pair of charge carriers inside of a solid, the transition probability is strongly localized to instants slightly after the extrema of the electric field. The extreme temporal localization is utilized in a simple electronic circuit to record the waveforms of infrared to ultraviolet light fields.

View Article and Find Full Text PDF

Owing to its low excitation energy and long radiative lifetime, the first excited isomeric state of thorium-229, Th, can be optically controlled by a laser and is an ideal candidate for the creation of a nuclear optical clock, which is expected to complement and outperform current electronic-shell-based atomic clocks. A nuclear clock will have various applications-such as in relativistic geodesy, dark matter research and the observation of potential temporal variations of fundamental constants-but its development has so far been impeded by the imprecise knowledge of the energy of Th. Here we report a direct measurement of the transition energy of this isomeric state to the ground state with an uncertainty of 0.

View Article and Find Full Text PDF

Photoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales.

View Article and Find Full Text PDF

In this article, we present coherent control of above-threshold photoemission from a tungsten nanotip achieving nearly perfect modulation. Depending on the pulse delay between fundamental ([Formula: see text]) and second harmonic ([Formula: see text]) pulses of a femtosecond fiber laser at the nanotip, electron emission is significantly enhanced or depressed during temporal overlap. Electron emission is studied as a function of pulse delay, optical near-field intensities, DC bias field and final photoelectron energy.

View Article and Find Full Text PDF

We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly.

View Article and Find Full Text PDF

Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse.

View Article and Find Full Text PDF

The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space.

View Article and Find Full Text PDF

We theoretically investigate the generation of ultrafast currents in insulators induced by strong few-cycle laser pulses. Ab initio simulations based on time-dependent density functional theory give insight into the atomic-scale properties of the induced current signifying a femtosecond-scale insulator-metal transition. We observe the transition from nonlinear polarization currents during the laser pulse at low intensities to tunnelinglike excitation into the conduction band at higher laser intensities.

View Article and Find Full Text PDF

The impact of individual slow highly charged ions (HCI) on alkaline earth halide and alkali halide surfaces creates nano-scale surface modifications. For different materials and impact energies a wide variety of topographic alterations have been observed, ranging from regularly shaped pits to nanohillocks. We present experimental evidence for the creation of thermodynamically stable defect agglomerations initially hidden after irradiation but becoming visible as pits upon subsequent etching.

View Article and Find Full Text PDF

We simulate the electron transmission through insulating Mylar (polyethylene terephthalate, or PET) capillaries. We show that the mechanisms underlying the recently discovered electron guiding are fundamentally different from those for ion guiding. Quantum reflection and multiple near-forward scattering rather than the self-organized charge up are key to the transmission along the capillary axis irrespective of the angle of incidence.

View Article and Find Full Text PDF

Upon impact on a solid surface, the potential energy stored in slow highly charged ions is primarily deposited into the electronic system of the target. By decelerating the projectile ions to kinetic energies as low as 150 x q eV, we find first unambiguous experimental evidence that potential energy alone is sufficient to cause permanent nanosized hillocks on the (111) surface of a CaF(2) single crystal. Our investigations reveal a surprisingly sharp and well-defined threshold of potential energy for hillock formation which can be linked to a solid-liquid phase transition.

View Article and Find Full Text PDF

We demonstrate that multiphoton-induced photoelectron emission from a gold surface caused by low-energy (unamplified) 4-fs, 750-nm laser pulses is sensitive to the timing of electric field oscillations with respect to the pulse peak. This observation confirms recent theoretical predictions and opens the door to measuring the absolute value of the carrier-envelope phase difference of few-cycle light pulses with a solid-state detector.

View Article and Find Full Text PDF

The phase varphi of the field oscillations with respect to the peak of a laser pulse influences the light field evolution as the pulse length becomes comparable to the wave cycle and, hence, affects the interaction of intense few-cycle pulses with matter. We theoretically investigate photoelectron emission induced by an intense, few-cycle laser pulse from a metal surface (jellium) within the framework of time-dependent density functional theory and find a pronounced varphi dependence of the photocurrent. Our results reveal a promising route to measuring varphi of few-cycle light pulses (tau<6 fs at lambda=0.

View Article and Find Full Text PDF

The kinematics of feeding on fish have been studied in the aquatic feeding specialist Chelus fimbriatus, the fringed turtle, to provide a basic description of complete feeding cycles. Anatomical findings supplement the kinematic results. High-speed video (500 frames x s(-1)) recordings and X-ray film (150 frames x s(-1)) are used to analyse the kinematic variables characterizing head, hyoid, oesophageal and prey movements.

View Article and Find Full Text PDF

A new form of potential sputtering has been found for impact of slow ( < or = 1500 eV) multiply charged Xe ions (charge states up to q = 25) on MgO(x). In contrast to alkali-halide or SiO2 surfaces this mechanism requires the simultaneous presence of electronic excitation of the target material and of a kinetically formed collision cascade within the target in order to initiate the sputtering process. This kinetically assisted potential sputtering mechanism has been identified to be present for other insulating surfaces as well.

View Article and Find Full Text PDF