Purpose: Bromodomain-containing protein 7 (BRD7) is downregulated and functions as a tumor suppressor in many types of cancers including breast cancer, and the dysregulation of BRD7 expression is closely related to the development and progression of breast cancer. Whereas little attention has been focused on the regulation of BRD7 protein levels in breast cancer, which needs to be further elucidated.
Methods: The protein stability of BRD7 in breast cancer cells and BRD7 protein level in breast cancer tissues was examined by Western Blotting.
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels.
View Article and Find Full Text PDFPurpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition.
Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and and experiments were performed to confirm the findings.
Am J Cancer Res
December 2023
5-methylcytosine (m5C modification) plays an essential role in tumors, which affects different types of RNA, the expression of downstream target genes, and downstream pathways, thus participating in the tumor process. However, the effect of m5C modification on RNA in tumors and the exact mechanism have not been systematically reviewed. Therefore, we reviewed the status and sites of m5C modification, as well as the expression pattern and biological functions of m5C regulators in tumors, and further summarized the effects and regulation mechanism of m5C modification on messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA) and other RNA in tumors.
View Article and Find Full Text PDFBRD7 was identified as a tumor suppressor in nasopharyngeal carcinoma (NPC). Circular RNAs (CircRNAs) are involved in the occurrence and development of NPC as oncogenes or tumor suppressors. However, the function and mechanism of the circular RNA forms derived from BRD7 in NPC are not well understood.
View Article and Find Full Text PDFBackground: NOP2/Sun RNA methyltransferase 2 (NSUN2), an important methyltransferase of m5C, has been poorly studied in cancers, and the relationship between NSUN2 and immunity remains largely unclear. Therefore, the purpose of this study was to explore the expression and prognostic value of NSUN2 and the role of NSUN2 in immunity in cancers.
Methods: The TIMER, CPTAC and other databases were used to analyze the expression of NSUN2, its correlation with clinical stage and its prognostic value across cancers.
Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo.
View Article and Find Full Text PDFYin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the "soil" of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a novel type of endogenous non-coding RNAs, which are covalently closed loop structures formed by precursor mRNAs (pre-mRNAs) through back-splicing. CircRNAs are abnormally expressed in many tumors, and play critical roles in a variety of tumors as oncogenes or tumor suppressor genes by sponging miRNAs, regulating alternative splicing and transcription, cis-regulating host genes, interacting with RNA binding proteins (RBPs) or encoding polypeptides. Among them, the regulation of circRNAs on their corresponding host genes is a critical way for circRNAs to exit their functions.
View Article and Find Full Text PDFBRD7 functions as a crucial tumor suppressor in numerous malignancies including nasopharyngeal carcinoma (NPC). However, its function and exact mechanisms involved in tumor progression are not well understood. Here, we found that the B7BS was a potential enhancer region of BIRC2, and BRD7 negatively regulated the transcriptional activity and expression of BIRC2 by targeting the activation of the BIRC2 enhancer.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a type of endogenous non-coding RNA and a critical epigenetic regulation way that have a closed-loop structure and are highly stable, conserved, and tissue-specific, and they play an important role in the development of many diseases, including tumors, neurological diseases, and cardiovascular diseases. CircSMARCA5 is a circRNA formed by its parental gene SMARCA5 via back splicing which is dysregulated in expression in a variety of tumors and is involved in tumor development with dual functions as an oncogene or tumor suppressor. It not only serves as a competing endogenous RNA (ceRNA) by binding to various miRNAs, but it also interacts with RNA binding protein (RBP), regulating downstream gene expression; it also aids in DNA damage repair by regulating the transcription and expression of its parental gene.
View Article and Find Full Text PDFN6-methyladenosine (m6A) is an extremely common and conservative posttranscriptional modification, that can specifically target and regulate the expression or stability of a series of tumor-related genes, thus playing critical roles in the occurrence and development of tumors. c-Myc is an important tumorigenic transcription factor that promotes tumorigenesis and development by mainly regulating the expression of downstream target genes. Increasing evidence shows that m6A modification, as well as abnormal expression and regulation of c-Myc, is critical molecular mechanisms driving tumorigenesis and development.
View Article and Find Full Text PDF