The increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity-duration-frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report's evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
November 2013
Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960-2000).
View Article and Find Full Text PDF