Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFCryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform.
View Article and Find Full Text PDFDespite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventionalcell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable.
View Article and Find Full Text PDFCryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform.
View Article and Find Full Text PDFStatic three-dimensional (3D) cell culture has been demonstrated in ultralow attachment well plates, hanging droplet plates, and microtiter well plates with hydrogels or magnetic nanoparticles. Although it is simple, reproducible, and relatively inexpensive, thus potentially used for high-throughput screening, statically cultured 3D cells often suffer from a necrotic core due to limited nutrient and oxygen diffusion and waste removal and have a limited -like tissue structure. Here, we overcome these challenges by developing a pillar/perfusion plate platform and demonstrating high-throughput, dynamic 3D cell culture.
View Article and Find Full Text PDFHuman liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues . However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs.
View Article and Find Full Text PDFHuman liver organoids (HLOs) differentiated from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs) can recapitulate the structure and function of human fetal liver tissues, thus being considered as a promising tissue model for liver diseases and predictive compound screening. However, the adoption of HLOs in drug discovery faces several technical challenges, which include the lengthy differentiation process with multiple culture media leading to batch-to-batch variation, short-term maintenance of hepatic functions post-maturation, low assay throughput due to Matrigel dissociation and HLO transfer to a microtiter well plate, and insufficient maturity levels compared to primary hepatocytes. To address these issues, expandable HLOs (Exp-HLOs) derived from human iPSCs were generated by optimizing differentiation protocols, which were rapidly printed on a 144-pillar plate with sidewalls and slits (144PillarPlate) and dynamically cultured for up to 20 days into differentiated HLOs (Diff-HLOs) in a 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for organoid culture and analysis.
View Article and Find Full Text PDFHuman liver organoids (HLOs) hold significant potential for recapitulating the architecture and function of liver tissues . However, conventional culture methods of HLOs, forming Matrigel domes in 6-/24-well plates, have technical limitations such as high cost and low throughput in organoid-based assays for predictive assessment of compounds in clinical and pharmacological lab settings. To address these issues, we have developed a unique microarray 3D bioprinting protocol of progenitor cells in biomimetic hydrogels on a pillar plate with sidewalls and slits, coupled with a clear bottom, 384-deep well plate for scale-up production of HLOs.
View Article and Find Full Text PDFDespite the potential toxicity of commercial chemicals to the development of the nervous system (known as developmental neurotoxicity or DNT), conventional cell models have primarily been employed for the assessment of acute neuronal toxicity. On the other hand, animal models used for the assessment of DNT are not physiologically relevant due to the heterogenic difference between humans and animals. In addition, animal models are low-throughput, time-consuming, expensive, and ethically questionable.
View Article and Find Full Text PDFThree-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates.
View Article and Find Full Text PDFAngiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration.
View Article and Find Full Text PDF