Publications by authors named "Lekhana Bhandary"

The finding of molecules associated with aging is important for the prevention of chronic degenerative diseases and for longevity strategies. MicroRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and miR-146b-5p has been shown to be involved in different degenerative diseases. However, miR-146b-5p modulation has not been evaluated in mesenchymal stem cells (MSCs) commitment or during aging.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) plays an important role in maintaining cellular homeostasis by degrading a multitude of key regulatory proteins. FBXW11, also known as b-TrCP2, belongs to the F-box family, which targets the proteins to be degraded by UPS. Transcription factors or proteins associated with cell cycle can be modulated by FBXW11, which may stimulate or inhibit cellular proliferation.

View Article and Find Full Text PDF

Background: NorthCape4000 (NC4000) is the most participated ultra-endurance cycling race. Eight healthy male Caucasian amateur cyclists were evaluated: (a) before starting the preparation period; (b) in the week preceding NC4000 (after the training period); (c) after NC4000 race, with the aim to identify the effects of ultra-cycling on body composition, aerobic capacity and biochemical parameters as well as on the differentiation of progenitor cells.

Methods: Bioelectrical impedance analysis (BIA) and dual energy x-ray absorptiometry (DEXA) assessed body composition; cardiopulmonary exercise test (CPET) evaluated aerobic capacity.

View Article and Find Full Text PDF
Article Synopsis
  • RUNX2 and SOX9 are key regulators in the process of chondrogenesis, with each inhibiting the other's activity.
  • The study explores the role of miRNA-204-5p in chondrogenesis, revealing that silencing miR-204 leads to increased expression of SOX9 and chondrogenic genes in Mesenchymal Stem Cells (MSCs).
  • Overall, the findings suggest that miR-204 negatively influences the commitment of MSCs to osteochondrogenesis but positively affects the maturation of chondrocytes.
View Article and Find Full Text PDF
Article Synopsis
  • Mammosphere assays help identify cancer-initiating stem cells that can form spheres in a lab setting, but traditional methods lead to cell clumping, making it hard to measure true efficiency.
  • A new technique using lipid anchors was developed to reduce cell aggregation while allowing for free-floating growth, improving the accuracy of monitoring mammosphere formation.
  • This method resulted in a significantly higher percentage of clonal mammospheres and better size correlation compared to traditional low-attachment approaches, indicating more reliable assay outcomes.
View Article and Find Full Text PDF

Dendritic cells (DCs) are increasingly important for research and clinical use but obtaining sufficient numbers of dendritic cells is a growing challenge. We systemically investigated the effect of monocyte (MO) seeding density on the generation of monocyte-derived immature DCs (iDCs) in MicroDEN, a perfusion-based culture system, as well as 6-well plates. Cell surface markers and the ability of the iDCs to induce proliferation of allogeneic T cells were examined.

View Article and Find Full Text PDF

Dendritic cells (DCs) are an indispensable part of studying human responses that are important for protective immunity against cancer and infectious diseases as well as prevention of autoimmunity and transplant rejection. These cells are also key elements of personalized vaccines for cancer and infectious diseases. Despite the vital role of DCs in both clinical and basic research contexts, methods for obtaining these cells from individuals remains a comparatively under-developed and inefficient process.

View Article and Find Full Text PDF

The periphery of epithelial cells is shaped by opposing cytoskeletal physical forces generated predominately by two dynamic force generating systems-growing microtubule ends push against the boundary from the cell center, and the actin cortex contracts the attached plasma membrane. Here we investigate how changes to the structure and dynamics of the actin cortex alter the dynamics of microtubules. Current drugs target actin polymerization and contraction to reduce cell division and invasiveness; however, the impacts on microtubule dynamics remain incompletely understood.

View Article and Find Full Text PDF

A high proportion of human tumors maintain activation of both the PI3K and Ras/MAPK pathways. In basal-like breast cancer (BBC), PTEN expression is decreased/lost in over 50% of cases, leading to aberrant activation of the PI3K pathway. Additionally, BBC cell lines and tumor models have been shown to exhibit an oncogenic Ras-like gene transcriptional signature, indicating activation of the Ras/MAPK pathway.

View Article and Find Full Text PDF

The dynamic balance between microtubule extension and actin contraction regulates mammalian cell shape, division, and motility, which has made the cytoskeleton an attractive and very successful target for cancer drugs. Numerous compounds in clinical use to reduce tumor growth cause microtubule breakdown (vinca alkaloids, colchicine-site, and halichondrins) or hyperstabilization of microtubules (taxanes and epothilones). However, both of these strategies indiscriminately alter the assembly and dynamics of all microtubules, which causes significant dose-limiting toxicities on normal tissues.

View Article and Find Full Text PDF

The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network.

View Article and Find Full Text PDF

Activation of genes promoting aerobic glycolysis and suppression of mitochondrial oxidative phosphorylation is one of the hallmarks of cancer. The RUNX2 transcription factor mediates breast cancer (BC) metastasis to bone and is regulated by glucose availability. But, the mechanisms by which it regulates glucose metabolism and promotes an oncogenic phenotype are not known.

View Article and Find Full Text PDF

The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex.

View Article and Find Full Text PDF

Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency.

View Article and Find Full Text PDF

The breast cancer type 1 susceptibility gene (BRCA1) is a tumor suppressor gene, mutations or loss of which lead to genomic instability and breast cancer. BRCA1 protein is part of a large multi-protein complex involved in a variety of DNA repair and transcription regulatory functions. At least four splice variants have been described and these differ in their function and tissue and spatio-temporal expression patterns.

View Article and Find Full Text PDF