Publications by authors named "Lekha Gupta"

The kinetics of lithium diisopropylamide (LDA) in tetrahydrofuran under nonequilibrium conditions are reviewed. These conditions correspond to a class of substrates in which the rates of LDA aggregation and solvation events are comparable to the rates at which various fleeting intermediates react with substrate. Substrates displaying these reactivities, by coincidence, happen to be those that react at tractable rates on laboratory time scales at -78 °C.

View Article and Find Full Text PDF

Lithiation of 1,4-difluorobenzene with lithium diisopropylamide (LDA) in THF at -78 °C joins the ranks of a growing number of metalations that occur under conditions in which the rates of aggregate exchanges are comparable to the rates of metalation. As such, a substantial number of barriers vie for rate limitation. Rate studies reveal that rate-limiting steps and even the choice of reaction coordinate depend on subtle variations in concentration.

View Article and Find Full Text PDF

Lithium diisopropylamide (LDA)-mediated ortholithiations of 2-fluoropyridine and 2,6-difluoropyridine in tetrahydrofuran at -78 °C were studied using a combination of IR and NMR spectroscopic and computational methods. Rate studies show that a substrate-assisted deaggregation of LDA dimer occurs parallel to an unprecedented tetramer-based pathway. Standard and competitive isotope effects confirm post-rate-limiting proton transfer.

View Article and Find Full Text PDF

Ortholithiation of 1-chloro-3-(trifluoromethyl)benzene with lithium diisopropylamide (LDA) in tetrahydrofuran at -78 °C displays characteristics of reactions in which aggregation events are rate limiting. Metalation with lithium-chloride-free LDA involves a rate-limiting deaggregation via dimer-based transition structures. The post-rate-limiting proton transfers are suggested to involve highly solvated triple ions.

View Article and Find Full Text PDF

A combination of NMR, kinetic, and computational methods are used to examine reactions of lithium diethylamide in tetrahydrofuran (THF) with n-dodecyl bromide and n-octyl benzenesulfonate. The alkyl bromide undergoes competitive S(N)2 substitution and E2 elimination in proportions independent of all concentrations except for a minor medium effect. Rate studies show that both reactions occur via trisolvated-monomer-based transition structures.

View Article and Find Full Text PDF

Lithium diisopropylamide (LDA) in tetrahydrofuran at -78 °C undergoes 1,4-addition to an unsaturated ester via a rate-limiting deaggregation of LDA dimer followed by a post-rate-limiting reaction with the substrate. Muted autocatalysis is traced to a lithium enolate-mediated deaggregation of the LDA dimer and the intervention of LDA-lithium enolate mixed aggregates displaying higher reactivities than LDA. Striking accelerations are elicited by <1.

View Article and Find Full Text PDF

Treatment of 2,6-difluoropyridine with lithium diisopropylamide in THF solution at -78 degrees C effects ortholithiation quantitatively. Warming the solution to 0 degrees C converts the aryllithium to 2-fluoro-6-(diisopropylamino)pyridine. Rate studies reveal evidence of a reversal of the ortholithiation and a subsequent 1,2-addition via two monomer-based pathways of stoichiometries [ArH*i-Pr(2)NLi(THF)](double dagger) and [ArH*i-Pr(2)NLi(THF)(3)](double dagger).

View Article and Find Full Text PDF

Ortholithiations of a range of arenes mediated by lithium diisopropylamide (LDA) in THF at -78 degrees C reveal substantial accelerations by as little as 0.5 mol % of LiCl (relative to LDA). Substrate dependencies suggest a specific range of reactivity within which the LiCl catalysis is optimal.

View Article and Find Full Text PDF

n-Butyllithium/N,N,N',N'-tetramethylethylenediamine-mediated ortholithiations of aryloxazolines are described. Methyl substituents on the aryloxazoline and substituents at the meta position of the arenes (methoxy, oxazolinyl, and fluoro) influence the rates and the mechanisms. Monomer- and dimer-based reactions are implicated.

View Article and Find Full Text PDF