Publications by authors named "Lekai Xu"

Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative.

View Article and Find Full Text PDF

Background: Survival prediction is one of the crucial goals in precision medicine, as accurate survival assessment can aid physicians in selecting appropriate treatment for individual patients. To achieve this aim, extensive data must be utilized to train the prediction model and prevent overfitting. However, the collection of patient data for disease prediction is challenging due to potential variations in data sources across institutions and concerns regarding privacy and ownership issues in data sharing.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) are emerging as the most promising catalysts for various electrochemical reactions. The isolated dispersion of metal atoms enables high density of active sites, and the simplified structure makes them ideal model systems to study the structure-performance relationships. However, the activity of SACs is still insufficient, and the stability of SACs is usually inferior but has received little attention, hindering their practical applications in real devices.

View Article and Find Full Text PDF

Noninvasive assessments of the risk of lymph node metastasis (LNM) in patients with lung adenocarcinoma (LAD) are of great value for selecting individualized treatment options. However, the diagnostic accuracies of different preoperative LN evaluation methods in routine clinical practice are not satisfactory. Here, an assessment to detect folate receptor (FR)-positive circulating tumor cells (CTCs) based on ligand-targeted enzyme-linked polymerization is established.

View Article and Find Full Text PDF

Hollow structures have demonstrated great potential in drug delivery owing to their privileged structure, such as high surface-to-volume ratio, low density, large cavities, and hierarchical pores. In this review, we provide a comprehensive overview of hollow structured materials applied in targeting recognition, smart response, and drug release, and we have addressed the possible chemical factors and reactions in these three processes. The advantages of hollow nanostructures are summarized as follows: hollow cavity contributes to large loading capacity; a tailored structure helps controllable drug release; variable compounds adapt to flexible application; surface modification facilitates smart responsive release.

View Article and Find Full Text PDF

CdSe/Cu core/shell nanowires (NWs) are successfully synthesized by a wet chemical method for the first time. By utilizing the solution-liquid-solid (SLS) mechanism, CdSe NWs are fabricated by Bi seeds, which act as catalysts. In the subsequent radial overcoating of the Cu shell on the CdSe NWs, Fe ions have been proven to be an indispensable and efficient catalyzer.

View Article and Find Full Text PDF