The oral administration of celecoxib (CLX) is a real problem because of its low aqueous solubility that results in high variability in absorption and its severe adverse effect such as cardiotoxic effects and gastrointestinal toxicity. Self-nanoemulsifying drug delivery systems (SNEDDS) can enhance the poor dissolution and erratic absorption of poorly water-soluble drugs such as CLX. This study was conducted to investigate the potential of SNEDDS to enhance the efficacy of CLX on inflamed mucous tissue and reduce systemic adverse effects by increasing its poor dissolution properties.
View Article and Find Full Text PDFBackground: The present study describes glycerosomes (vesicles composed of phospholipids, glycerol and water) as a novel drug delivery system for topical application of celecoxib (CLX) and cupferron (CUP) compound.
Aim: The goal of this research was to design topical soft innovative vesicles loaded with CLX or CUP for enhancing the efficacy and avoiding systemic toxicity of CLX and CUP.
Methods: CLX and CUP loaded glycerosomes were prepared by hydrating phospholipid-cholesterol films with glycerol aqueous solutions (20-40%, v/v).
Purpose: Voriconazole has both low aqueous solubility and stability. We hypothesize that designing voriconazole in the form of a nano powder inhaler at a geometric diameter within 1-5 μm will enhance its stability and solubility. Therefore, we prepared nanoagglomerates of voriconazole which will collapse in the lungs to reform the nanoparticles.
View Article and Find Full Text PDF