Publications by authors named "Lejian Liao"

Magnetic resonance imaging (MRI), ultrasound (US), and contrast-enhanced ultrasound (CEUS) can provide different image data about uterus, which have been used in the preoperative assessment of endometrial cancer. In practice, not all the patients have complete multi-modality medical images due to the high cost or long examination period. Most of the existing methods need to perform data cleansing or discard samples with missing modalities, which will influence the performance of the model.

View Article and Find Full Text PDF

In natural language processing, fact verification is a very challenging task, which requires retrieving multiple evidence sentences from a reliable corpus to verify the authenticity of a claim. Although most of the current deep learning methods use the attention mechanism for fact verification, they have not considered imposing attentional constraints on important related words in the claim and evidence sentences, resulting in inaccurate attention for some irrelevant words. In this paper, we propose a syntactic evidence network (SENet) model which incorporates entity keywords, syntactic information and sentence attention for fact verification.

View Article and Find Full Text PDF

Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph: 1) the similarity between the original graph and the generated augmented graph gradually decreases and 2) the discrimination between all nodes within each augmented view gradually increases.

View Article and Find Full Text PDF

Sentiment classification is a form of data analytics where people's feelings and attitudes toward a topic are mined from data. This tantalizing power to "predict the zeitgeist" means that sentiment classification has long attracted interest, but with mixed results. However, the recent development of the BERT framework and its pretrained neural language models is seeing new-found success for sentiment classification.

View Article and Find Full Text PDF

The nonperfused volume (NPV) ratio is the key to the success of high intensity focused ultrasound (HIFU) ablation treatment of adenomyosis. However, there are no qualitative interpretation standards for predicting the NPV ratio of adenomyosis using magnetic resonance imaging (MRI) before HIFU ablation treatment, which leading to inter-reader variability. Convolutional neural networks (CNNs) have achieved state-of-the-art performance in the automatic disease diagnosis of MRI.

View Article and Find Full Text PDF

Many big data applications require real-time analysis of continuous data streams. Stream Processing Systems (SPSs) are designed to act on real-time streaming data using continuous queries consisting of interconnected operators. The dynamic nature of data streams, for example, fluctuation in data arrival rates and uneven data distribution, can cause an operator to be a bottleneck one.

View Article and Find Full Text PDF

Due to the generation of enormous amounts of data at both lower costs as well as in shorter times, whole-exome sequencing technologies provide dramatic opportunities for identifying disease genes implicated in Mendelian disorders. Since upwards of thousands genomic variants can be sequenced in each exome, it is challenging to filter pathogenic variants in protein coding regions and reduce the number of missing true variants. Therefore, an automatic and efficient pipeline for finding disease variants in Mendelian disorders is designed by exploiting a combination of variants filtering steps to analyze the family-based exome sequencing approach.

View Article and Find Full Text PDF