With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems.
View Article and Find Full Text PDFmonitoring of HO in cellular microenvironments plays a critical role in the early diagnosis and pretreatment of cancer, but is limited by the lack of efficient and low-cost strategies for the large-scale preparation of real-time biosensors. Herein, a universal strategy for MXene-based composite inks combined with a scalable screen-printing process is validated in large-scale manufacturing of electrochemical biosensors for detection of HO secreted from live cells. Compositing biocompatible carboxymethyl cellulose (CMCS) with excellent conductive MXene, a water-based ink electrode (MXene/CMCS) with tunable viscosity is efficiently printed with desirable printing accuracy.
View Article and Find Full Text PDFBased on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property.
View Article and Find Full Text PDFThe rise of flexible electronics calls for efficient microbatteries (MBs) with requirements in energy/power density, stability, and flexibility simultaneously. However, the ever-reported flexible MBs only display progress around certain aspects of energy loading, reaction rate, and electrochemical stability, and it remains challenging to develop a micro-power source with excellent comprehensive performance. Herein, a reconstructed hierarchical Ni-Co alloy microwire is designed to construct flexible Ni-Zn MB.
View Article and Find Full Text PDFThree-dimensional (3D) micro/nano structures are significant in many applications because of their novel multi-functions and potential in high integration. As is known, the traditional methods for the processing of 3D micro/nano structures exhibit disadvantages in mass production and machining precision. Alternatively, ultrafast laser machining, as a rapid and high-power-density processing method, exhibits advantages in 3D micro/nano structuring due to its characteristics of extremely high peak power and ultra-short pulse.
View Article and Find Full Text PDFMicromachines (Basel)
September 2022
In this work, we demonstrated a novel and low-cost full-range optical coherence tomography (FROCT) method. In comparison with the off-pivot approach, which needs precise control of the deflecting distance and should be adjusted for different situations, our proposed method is more flexible without regulating the system itself. Different from the previous systems reported in the literature, which used a high-cost piezo-driven stage to introduce the phase modulation, our system utilizes a cost-effective voice coil motor for retrieving the complex-valued spectral signal.
View Article and Find Full Text PDFNanoscale Res Lett
August 2021
The demand for green and efficient energy storage devices in daily life is constantly rising, which is caused by the global environment and energy problems. Lithium-ion batteries (LIBs), an important kind of energy storage devices, are attracting much attention. Graphite is used as LIBs anode, however, its theoretical capacity is low, so it is necessary to develop LIBs anode with higher capacity.
View Article and Find Full Text PDF