Background: Methylation cycle and folate-mediated one-carbon metabolism maintenance is important for many physiological processes including neurotransmitter regulation, nerve myelination and DNA synthesis. These processes play an indispensible role in growth and development, as well as in cognitive function and neuromuscular stability, which are key issues in children with severe cerebral palsy (CP).
Methods: Blood samples were collected from children with severe CP (n = 24) and age-matched typically developing healthy controls (n = 24), as an exploratory study.
The survival and function of retinal neurons is dependent on mitochondrial energy generation and its intracellular distribution by creatine kinase. Post ischemic disruption of retinal creatine synthesis, creatine kinase activity, or transport of creatine into neurons may impair retinal function. S-adenosyl-L-methionine (SAMe) is required for creatine synthesis, phosphatidylcholine and glutathione synthesis, and transducin methylation.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) can increase susceptibility to perinatal hypoxic brain injury for reasons that are unknown. Previous studies of the neonatal IUGR brain have suggested that the cerebral mitochondrial capacity is reduced but the glycolytic capacity increased relative to normal weight (NW) neonates. In view of these two factors, we hypothesized that the generation of brain lactate during a mild hypoxic insult would be greater in neonatal IUGR piglets compared to NW piglets.
View Article and Find Full Text PDF