We have analysed the involvement of the beta isotype of the protein kinase C (PKC) family in the activation of NADPH oxidase in primary neutrophils. Using immunofluorescence and cell fractionation, PKC-beta is shown to be recruited to the plasma membrane upon stimulation with phorbol ester and to the phagosomal membrane upon phagocytosis of IgG-coated particles (Fcgamma-receptor stimulus). The time course of recruitment is similar to that of NADPH oxidase activation by these stimuli.
View Article and Find Full Text PDFThe antigen-mediated activation of mast cells by means of IgE antibodies bound to the cell surface leads to direct interactions between FcepsilonRI receptor cytoplasmic domains and various intracellular proteins. These interactions initiate diverse signal-transduction pathways, and the activation of these pathways results in the immediate release of proinflammatory agents. A delayed response also occurs and includes the release of various cytokines.
View Article and Find Full Text PDFThe beta-isoform of protein kinase C (PKC) has paradoxically been suggested to be important for both insulin action and insulin resistance as well as for contributing to the pathogenesis of diabetic complications. Presently, we evaluated the effects of knockout of the PKCbeta gene on overall glucose homeostasis and insulin regulation of glucose transport. To evaluate subtle differences in glucose homeostasis in vivo, knockout mice were extensively backcrossed in C57BL/6 mice to diminish genetic differences other than the absence of the PKCbeta gene.
View Article and Find Full Text PDFTo identify genes that are differentially expressed during self-repair processes in mouse brain, we screened a subtracted cDNA library enriched for brain-specific clones. One of these clones, H74, detected a 4.4-kb mRNA predominantly expressed in brain and dorsal root ganglia neurons.
View Article and Find Full Text PDFThe B cell-specific transmembrane protein RP-105 belongs to the family of Drosophila toll-like proteins which are likely to trigger innate immune responses in mice and man. Here we demonstrate that the Src-family protein tyrosine kinase Lyn, protein kinase C beta I/II (PKCbetaI/II), and Erk2-specific mitogen-activated protein (MAP) kinase kinase (MEK) are essential and probably functionally connected elements of the RP-105-mediated signaling cascade in B cells. We also find that negative regulation of RP-105-mediated activation of MAP kinases by membrane immunoglobulin may account for the phenomenon of antigen receptor-mediated arrest of RP-105-mediated B cell proliferation.
View Article and Find Full Text PDFCross-linking of the antigen receptor on lymphocytes by antigens or antibodies to the receptor results in activation of enzymes of the protein kinase C (PKC) family. Mice homozygous for a targeted disruption of the gene encoding the PKC-betaI and PKC-betaII isoforms develop an immunodeficiency characterized by impaired humoral immune responses and reduced cellular responses of B cells, which is similar to X-linked immunodeficiency in mice. Thus PKC-betaI and PKC-betaII play an important role in B cell activation and may be functionally linked to Bruton's tyrosine kinase in antigen receptor-mediated signal transduction.
View Article and Find Full Text PDF