Publications by authors named "Leitao Wu"

The pathogenic mechanism of Parkinson's disease (PD) remains to be elucidated; however, mitochondrial dysfunction at the level of complex I and oxidative stress is suggestively involved in the development of PD. In our previous work, salidroside (Sal), an active component extracted from the medicinal plant L., might protect dopaminergic (DA) neurons through modulating ROS-NO-related pathway.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of Lewy bodies (LBs) in the surviving SNc neurons. LBs formation is caused by the accumulation of α-synuclein (α-syn) or phosphorylated α-syn at serine-129 (pSer129-α-syn), which is implicated in the pathological progression of PD. Salidroside (Sal), the main active ingredient of the root of .

View Article and Find Full Text PDF

Background: Due to the lack of strong evidence to identify the relationship between antihypertensive drugs use and the risk of prostate cancer, it was needed to do a systematic review to go into the subject.

Methods: We systematically searched PubMed, Web of Science and Embase to identify studies published, through May 2015. Two evaluators independently reviewed and selected articles involving the subject.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disorder. We have found that salidroside (Sal) exhibited neuroprotective effects against MPP+ toxicity. However, the molecular mechanism is not fully understood.

View Article and Find Full Text PDF

Our previous work demonstrated that tetrahydroxystilbene glucoside (TSG) was able to effectively attenuate 1-methyl-4-phenylpyridinium (MPP)-induced apoptosis in PC12 cells partially via inhibiting reactive oxygen species (ROS) generation. However, the precise molecular mechanisms of TSG responsible for suppressing neuronal apoptosis have not been fully elucidated. To investigate the possible mechanism, we studied the neuroprotective effects of TSG on MPP-induced PC12 cells apoptosis and explored the molecular mechanisms that mediated the effects of TSG.

View Article and Find Full Text PDF

Several studies have indicated that microgravity can influence cellular progression, proliferation, and apoptosis in tumor cell lines. In this study, we observed that simulated microgravity inhibited proliferation and induced apoptosis in U251 malignant glioma (U251MG) cells. Furthermore, expression of the apoptosis-associated proteins, p21 and insulin-like growth factor binding protein-2 (IGFBP-2), was upregulated and downregulated, respectively, following exposure to simulated microgravity.

View Article and Find Full Text PDF

The degenerative loss through apoptosis of dopaminergic neurons in the substantia nigra pars compacta plays a primary role in the progression of Parkinson's disease (PD). Our in vitro experiments suggested that salidroside (Sal) could protect against 1-methyl-4-phenylpyridine-induced cell apoptosis in part by regulating the PI3K/Akt/GSK3 pathway. The current study aims to increase our understanding of the protective mechanisms of Sal in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropypridine- (MPTP-) induced PD mouse model.

View Article and Find Full Text PDF

Sertoli cells (SCs) function as "nurse cells," which play crucial roles in supporting spermatogenesis through establishing a unique and essential environment in the male reproductive tract. Given the important roles of SCs in male fertility, this study was designed to evaluate the effect of diosgenin, an aglycone of the steroidal saponin, on TM4 cell proliferation and to elucidate the possible mechanisms. We showed that diosgenin increased the proliferation of TM4 cell and primary SCs in a time- and concentration-dependent manner.

View Article and Find Full Text PDF