Background: Endometrial cancer (EC) is a major gynecological cancer with increasing incidence. It comprises four molecular subtypes with differing etiology, prognoses, and responses to chemotherapy. In the future, clinical trials testing new single agents or combination therapies will be targeted to the molecular subtype most likely to respond.
View Article and Find Full Text PDFEndometrial cancer is the most commonly diagnosed gynaecological malignancy. Unfortunately, 15-20% of women demonstrate persistent or recurrent tumours that are refractory to current chemotherapies. We previously identified activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 12% (stage I/II) to 17% (stage III/IV) endometrioid ECs and found that these mutations are associated with shorter progression-free and cancer-specific survival.
View Article and Find Full Text PDFIn this issue of Cancer Discovery, Hagel and colleagues report the design and the in vitro and in vivo activity of a novel, irreversible, paralog-specific kinase inhibitor of FGFR4, BLU9931. This compound binds covalently to a cysteine residue in the hinge region of FGFR4 but not in FGFR1-3. BLU9931 induces tumor shrinkage in hepatocellular carcinoma models that express a functioning ligand/receptor complex consisting of FGF19/FGFR4/KLB and adds to a growing list of anti-FGFR4 agents.
View Article and Find Full Text PDFWe show that imatinib, nilotinib, and dasatinib possess weak off-target activity against RAF and, therefore, drive paradoxical activation of BRAF and CRAF in a RAS-dependent manner. Critically, because RAS is activated by BCR-ABL, in drug-resistant chronic myeloid leukemia (CML) cells, RAS activity persists in the presence of these drugs, driving paradoxical activation of BRAF, CRAF, MEK, and ERK, and leading to an unexpected dependency on the pathway. Consequently, nilotinib synergizes with MEK inhibitors to kill drug-resistant CML cells and block tumor growth in mice.
View Article and Find Full Text PDFABL inhibitors have revolutionized the clinical management of chronic myeloid leukemia, but the BCR-ABL(T315I) mutation confers resistance to currently approved drugs. Chan et al. show, in this issue of Cancer Cell, that "switch-control" inhibitors block BCR-ABL(T315I) activity by preventing ABL from switching from the inactive to active conformation.
View Article and Find Full Text PDFWe show that in melanoma cells oncogenic BRAF, acting through MEK and the transcription factor BRN2, downregulates the cGMP-specific phosphodiesterase PDE5A. Although PDE5A downregulation causes a small decrease in proliferation, its major impact is to stimulate a dramatic increase in melanoma cell invasion. This is because PDE5A downregulation leads to an increase in cGMP, which induces an increase in cytosolic Ca(2+), stimulating increased contractility and inducing invasion.
View Article and Find Full Text PDFOncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear.
View Article and Find Full Text PDFSelumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity.
View Article and Find Full Text PDFPigment Cell Melanoma Res
December 2009
Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of (V600E)BRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of (V600E)BRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition.
View Article and Find Full Text PDFUpregulation of the Wnt5a pathway has been reported in some cutaneous melanomas but its role in uveal melanoma has not been assessed. We thus sought to determine whether activation of the Wnt-signalling pathway occurred in uveal melanoma through upregulation of some of the key downstream effectors, and whether expression of these components was associated with tumour characteristics and clinical outcome. Expression of Wnt5a, MMP7, and beta-catenin was determined in 40 primary uveal melanomas by immunohistochemistry and correlated with patient prognosis.
View Article and Find Full Text PDFp14ARF is inactivated by deletions/mutations in many cancer types and can suppress cell growth by both p53-dependent and p53-independent mechanisms. To identify novel downstream effectors of p14ARF, we used gene expression profiling as a primary screening tool to select candidates for follow up validation studies using in vitro cell-based assays. Gene expression profiles of a panel of 35 melanoma cell lines with either wild-type (n = 12) or mutant (n = 23) p14ARF were compared to identify genes associated with inactivation of p14ARF.
View Article and Find Full Text PDFPrognosis in patients with uveal melanoma is poor as approximately half of all tumors metastasize and currently there are no effective treatments for disseminated disease. Differences in invasiveness between uveal melanomas could therefore be of major significance regarding clinical outcome. To identify genes associated with invasive potential, we have used microarray expression profiling combined with phenotypic characterization of uveal melanoma and melanocyte cell lines to define a gene signature associated with cellular invasion.
View Article and Find Full Text PDFThe tumor suppressor PTEN antagonizes phosphatidylinositol 3-kinase (PI3K), which contributes to tumorigenesis in many cancer types. While PTEN mutations occur in some melanomas, their precise mechanistic consequences have yet to be elucidated. We sought to identify novel downstream effectors of PI3K using a combination of genomic and functional tests.
View Article and Find Full Text PDFCell surface mucins are complex glycoproteins expressed on the apical membrane surface of mucosal epithelial cells. In malignant epithelial cells they are thought to influence cell adhesion, and are clinical targets for tumor immunotherapy and serum tumor marker assays. We have compared expression of MUC1, MUC3, MUC4, MUC11, MUC12 and MUC13 mRNA in epithelial cancers and/or cell lines with non-malignant tissues.
View Article and Find Full Text PDFWe have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes.
View Article and Find Full Text PDFMUC1 is expressed on the surface of ovarian cancer cells. Nine different splice variants of MUC1 have been described, but no study has reported on the expression of MUC1 isoforms in human ovarian cancer. Our study compares patterns of expression of MUC1 splice variants of malignant and benign ovarian tumours.
View Article and Find Full Text PDF