Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function.
View Article and Find Full Text PDFThe COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue.
View Article and Find Full Text PDFOccurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production.
View Article and Find Full Text PDFPatients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2.
View Article and Find Full Text PDFVisceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage.
View Article and Find Full Text PDFBackground: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear.
Objectives: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19.
Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice.
View Article and Find Full Text PDFTrends Endocrinol Metab
August 2022
Objective: To investigate the role of physical activity in functional and molecular bladder alterations in an obese and insulin-resistant murine model.
Methods: Wistar rats were randomized into 1. physical activity and standard diet; 2.
Objective: To evaluate whether the addition of colchicine to standard treatment for COVID-19 results in better outcomes.
Design: We present the results of a randomised, double-blinded, placebo-controlled clinical trial of colchicine for the treatment of moderate to severe COVID-19, with 75 patients allocated 1:1 from 11 April to 30 August 2020. Colchicine regimen was 0.
Lipids govern vital cellular processes and drive physiological changes in response to different pathological or environmental cues. Lipid species can be roughly divided into structural and signalling lipids. The former is essential for membrane composition, while the latter are usually oxidized lipids.
View Article and Find Full Text PDFSevere COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled.
View Article and Find Full Text PDFBrown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
October 2020
Adipose tissue exerts multiple vital functions that critically maintain energy balance, including storing and expending energy, as well as secreting factors that systemically modulate nutrient metabolism. Since lipids are the major constituents of the adipocytes, it is unsurprising that the lipid composition of these cells plays a critical role in maintaining their functions and communicating with other organs and cells. In both positive and negative energy balance conditions, lipids and free fatty acids secreted from adipocytes exert either beneficial or detrimental effects in other tissues, such as the liver, pancreas and muscle.
View Article and Find Full Text PDFAdipose tissue plays an essential role in metabolic health. Ames dwarf mice are exceptionally long-lived and display metabolically beneficial phenotypes in their adipose tissue, providing an ideal model for studying the intersection between adipose tissue and longevity. To this end, we assessed the metabolome and lipidome of adipose tissue in Ames dwarf mice.
View Article and Find Full Text PDFUncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription.
View Article and Find Full Text PDFOpsin3 (Opn3) is a transmembrane heptahelical G protein-coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown.
View Article and Find Full Text PDFDistinct oxygenases and their oxylipin products have been shown to participate in thermogenesis by mediating physiological adaptations required to sustain body temperature. Since the role of the lipoxygenase (LOX) family in cold adaptation remains elusive, we aimed to investigate whether, and how, LOX activity is required for cold adaptation and to identify LOX-derived lipid mediators that could serve as putative cold mimetics with therapeutic potential to combat diabetes. By utilizing mass-spectrometry-based lipidomics in mice and humans, we demonstrated that cold and β3-adrenergic stimulation could promote the biosynthesis and release of 12-LOX metabolites from brown adipose tissue (BAT).
View Article and Find Full Text PDFThermogenic fat expends energy during cold for temperature homeostasis, and its activity regulates nutrient metabolism and insulin sensitivity. We measured cold-activated lipid landscapes in circulation and in adipose tissue by MS/MS shotgun lipidomics. We created an interactive online viewer to visualize the changes of specific lipid species in response to cold.
View Article and Find Full Text PDFPurpose: Obesity results in decreased lung function and increased inflammation. Moderate aerobic exercise (AE) reduced lung inflammation and remodeling in a variety of respiratory disease models. Therefore, this study investigated whether AE can attenuate a diet-induced obesity respiratory phenotype; including airway hyper-responsiveness (AHR), remodeling and inflammation.
View Article and Find Full Text PDFAdipocytes possess remarkable adaptive capacity to respond to nutrient excess, fasting or cold exposure, and they are thus an important cell type for the maintenance of proper metabolic health. Although the endoplasmic reticulum (ER) is a critical organelle for cellular homeostasis, the mechanisms that mediate adaptation of the ER to metabolic challenges in adipocytes are unclear. Here we show that brown adipose tissue (BAT) thermogenic function requires an adaptive increase in proteasomal activity to secure cellular protein quality control, and we identify the ER-localized transcription factor nuclear factor erythroid 2-like 1 (Nfe2l1, also known as Nrf1) as a critical driver of this process.
View Article and Find Full Text PDFBrown adipose tissue (BAT) and beige adipose tissue combust fuels for heat production in adult humans, and so constitute an appealing target for the treatment of metabolic disorders such as obesity, diabetes and hyperlipidemia. Cold exposure can enhance energy expenditure by activating BAT, and it has been shown to improve nutrient metabolism. These therapies, however, are time consuming and uncomfortable, demonstrating the need for pharmacological interventions.
View Article and Find Full Text PDF