Publications by authors named "Leiqian Zhang"

Solar-driven water evaporation is a promising solution for global water scarcity but is still facing challenges due to its substantial energy requirements. Here, a magnetic soft robotic bionic fish is developed by combining magnetic nanoparticles (FeO), poly(N-isopropylacrylamide), and carboxymethyl chitosan. This bionic fish can release liquid water through hydrophilic/hydrophobic phase transition and dramatically reduce energy consumption.

View Article and Find Full Text PDF

Hierarchical porous structures and well-modulated interfacial interactions are essential for the performance of electrode materials. The energy storage performance can be promoted by regulating the diffusion behavior of the electrolyte and constructing a coupled interaction at heterogeneous interfaces. Herein, we have synthesized ultrathin NiO nanosheets anchored to nitrogen-doped hierarchical porous carbon (NiO/N-HPC) and applied it to construct aqueous potassium ion hybrid capacitors (APIHCs).

View Article and Find Full Text PDF

Aqueous zinc (Zn) iodine (I) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents a multifunctional bionic electronic skin (e-skin) made from polyacrylic acid ionogel (PAIG) that mimics human skin perception to detect motion signals for robotic systems.
  • The PAIG is created using liquid metal and graphene oxide, offering excellent mechanical strength, self-healing properties, and resistance to extreme conditions.
  • The research also leads to the development of a bionic intelligent sorting robot that uses this e-skin to accurately identify and sort materials, with potential applications in AI, rehabilitation, and intelligent classification systems.
View Article and Find Full Text PDF

Prussian blue analogues (PBAs) are considered to be one of the most suitable sodium storage materials, especially with the introduction of the high-entropy (HE) concept into their structure to further improve their various abilities. However, severe agglomeration of the HEPBA particles still limits the fast charging capabilities. Here, an HEPBA (Na(FeMnCoNiCu)[Fe(CN)]□·HO) with a hollow stair-stepping spherical structure has been prepared through the chemical etching process of the traditional cubic structure of HEPBA.

View Article and Find Full Text PDF

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine.

View Article and Find Full Text PDF

The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS) on exfoliated black phosphorus (E-BP) nanosheets, creating an abundance of robust interfacial linkages.

View Article and Find Full Text PDF

Competition from hydrogen/oxygen evolution reactions and low solubility of N in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe C/Fe@PCNF-F away from water infiltration and endow a N molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust "quasi-solid-gas" state micro-domain around the catalyst surface.

View Article and Find Full Text PDF

The development of aqueous rechargeable zinc-iodine (Zn-I ) batteries is still plagued by the polyiodide shuttle issue, which frequently causes batteries to have inadequate cycle lifetimes. In this study, quaternization engineering based on the concept of "electric double layer" is developed on a commercial acrylic fiber skeleton ($1.55-1.

View Article and Find Full Text PDF