Juvenile angiofibroma (JA) is a rare, sex-specific, and highly vascularized nasal tumor that almost exclusively affects male adolescents, but its etiology has been controversial. The G protein-coupled hormone receptor LHCGR [luteinizing hormone (LH)/choriogonadotropin (hCG) receptor] represents a promising new candidate for elucidating the underlying mechanisms of sex specificity, pubertal manifestation, and JA progression. We used highly sensitive RNAscope technology, together with immunohistochemistry, to investigate the cellular expression, localization, and distribution of LHCGR in tissue samples from JA patients.
View Article and Find Full Text PDFThe tuft cell-ILC2 circuit orchestrates rapid type 2 responses upon detecting microbe-derived succinate and luminal helminths. Our findings delineate key mechanistic steps, involving IP3R2 engagement and Ca flux, governing IL-25 production by tuft cells triggered by succinate detection. While IL-17RB plays a pivotal intrinsic role in ILC2 activation, it exerts a regulatory function in tuft cells.
View Article and Find Full Text PDFThe transient receptor potential canonical (TRPC) ion channels play important biological roles, but their activation mechanisms are incompletely understood. Here, we describe recent methodological advances using small molecular probes designed for photopharmacology of TRPC channels by focusing on results obtained from the mouse olfactory system. These studies developed and used photoswitchable diacylglycerol (DAG) analogs for ultrarapid activation of native TRPC2 channels in vomeronasal sensory neurons and type B cells of the main olfactory epithelium.
View Article and Find Full Text PDFHost-derived succinate accumulates in the airways during bacterial infection. Here, we show that luminal succinate activates murine tracheal brush (tuft) cells through a signaling cascade involving the succinate receptor 1 (SUCNR1), phospholipase Cβ2, and the cation channel transient receptor potential channel subfamily M member 5 (TRPM5). Stimulated brush cells then trigger a long-range Ca wave spreading radially over the tracheal epithelium through a sequential signaling process.
View Article and Find Full Text PDFBackground: Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior.
View Article and Find Full Text PDFOlfactory stimuli from food influence energy balance, preparing the body for digestion when food is consumed. Social chemosensory cues predict subsequent energetic changes required for social interactions and could be an additional sensory input influencing energy balance. We show that exposure to female chemostimuli increases metabolic rate in male mice and reduces body weight and adipose tissue expansion when mice are fed a high-fat diet.
View Article and Find Full Text PDFSeveral previous lines of research have suggested, indirectly, that mouse lifespan is particularly susceptible to endocrine or nutritional signals in the first few weeks of life, as tested by manipulations of litter size, growth hormone levels, or mutations with effects specifically on early-life growth rate. The pace of early development in mice can also be influenced by exposure of nursing and weanling mice to olfactory cues. In particular, odors of same-sex adult mice can in some circumstances delay maturation.
View Article and Find Full Text PDFPhotoswitchable reagents can be powerful tools for high-precision biological control. TRPC5 is a Ca -permeable cation channel with distinct tissue-specific roles, from synaptic function to hormone regulation. Reagents giving spatiotemporally-resolved control over TRPC5 activity may be key to understanding and harnessing its biology.
View Article and Find Full Text PDFThe olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (HS) in mice.
View Article and Find Full Text PDFSmall molecular probes designed for photopharmacology and opto-chemogenetics are rapidly gaining widespread recognition for investigations of transient receptor potential canonical (TRPC) channels. This protocol describes the use of three photoswitchable diacylglycerol analogs-PhoDAG-1, PhoDAG-3, and OptoDArG-for ultrarapid activation and deactivation of native TRPC2 channels in mouse vomeronasal sensory neurons and olfactory type B cells, as well as heterologously expressed human TRPC6 channels. Photoconversion can be achieved in mammalian tissue slices and enables all-optical stimulation and shutoff of TRPC channels.
View Article and Find Full Text PDFIn mice, social behaviors are largely controlled by the olfactory system. Pheromone detection induces naïve virgin females to retrieve isolated pups to the nest and to be sexually receptive to males, but social experience increases the performance of both types of innate behaviors. Whether animals are intrinsically sensitive to the smell of conspecifics, or the detection of olfactory cues modulates experience for the display of social responses is currently unclear.
View Article and Find Full Text PDFUnderstanding T cell function in vivo is of key importance for basic and translational immunology alike. To study T cells in vivo, we developed a new knock-in mouse line, which expresses a fusion protein of granzyme B, a key component of cytotoxic granules involved in T cell-mediated target cell-killing, and monomeric teal fluorescent protein from the endogenous locus. Homozygous knock-ins, which are viable and fertile, have cytotoxic T lymphocytes with endogeneously fluorescent cytotoxic granules but wild-type-like killing capacity.
View Article and Find Full Text PDFMucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes.
View Article and Find Full Text PDFDopamine neurons of the hypothalamic arcuate nucleus (ARC) tonically inhibit the release of the protein hormone prolactin from lactotropic cells in the anterior pituitary gland and thus play a central role in prolactin homeostasis of the body. Prolactin, in turn, orchestrates numerous important biological functions such as maternal behavior, reproduction, and sexual arousal. Here, we identify the canonical transient receptor potential channel Trpc5 as an essential requirement for normal function of dopamine ARC neurons and prolactin homeostasis.
View Article and Find Full Text PDFAggression is controlled by the olfactory system in many animal species. In male mice, territorial and infant-directed aggression are tightly regulated by the vomeronasal organ (VNO), but how diverse subsets of sensory neurons convey pheromonal information to limbic centers is not yet known. Here, we employ genetic strategies to show that mouse vomeronasal sensory neurons expressing the G protein subunit Gαi2 regulate male-male and infant-directed aggression through distinct circuit mechanisms.
View Article and Find Full Text PDFCa-activated Cl currents have been observed in many physiological processes, including sensory transduction in mammalian olfaction. The olfactory vomeronasal (or Jacobson's) organ (VNO) detects molecular cues originating from animals of the same species or from predators. It then triggers innate behaviors such as aggression, mating, or flight.
View Article and Find Full Text PDFDiacylglycerol-sensitive transient receptor potential (TRP) channels play crucial roles in a wide variety of biological processes and systems, but their activation mechanism is not well understood. We describe an optical toolkit by which activation and deactivation of these ion channels can be controlled with unprecedented speed and precision through light stimuli. We show that the photoswitchable diacylglycerols PhoDAG-1 and PhoDAG-3 enable rapid photoactivation of two DAG-sensitive TRP channels, Trpc2 and TRPC6, upon stimulation with UV-A light, whereas exposure to blue light terminates channel activation.
View Article and Find Full Text PDFSignal transduction in sensory neurons of the mammalian vomeronasal organ (VNO) involves the opening of the canonical transient receptor potential channel Trpc2, a Ca-permeable cation channel that is activated by diacylglycerol and inhibited by Ca-calmodulin. There has been a long-standing debate about the extent to which the second messenger inositol 1,4,5-trisphosphate (InsP) and type 3 InsP receptor (InsPR3) are involved in the opening of Trpc2 channels and in sensory activation of the VNO. To address this question, we investigated VNO function of mice carrying a knockout mutation in the Itpr3 locus causing a loss of InsPR3.
View Article and Find Full Text PDFSensing the level of oxygen in the external and internal environments is essential for survival. Organisms have evolved multiple mechanisms to sense oxygen. No function in oxygen sensing has been attributed to any mammalian olfactory system.
View Article and Find Full Text PDFIn mice, social behaviors such as mating and aggression are mediated by pheromones and related chemosignals. The vomeronasal organ (VNO) detects olfactory information from other individuals by sensory neurons tuned to respond to specific chemical cues. Receptors expressed by vomeronasal neurons are implicated in selective detection of these cues.
View Article and Find Full Text PDFFormyl peptide receptor 3 (Fpr3, also known as Fpr-rs1) is a G protein-coupled receptor expressed in subsets of sensory neurons of the mouse vomeronasal organ, an olfactory substructure essential for social recognition. Fpr3 has been implicated in the sensing of infection-associated olfactory cues, but its expression pattern and function are incompletely understood. To facilitate visualization of Fpr3-expressing cells, we generated and validated two new anti-Fpr3 antibodies enabling us to analyze acute Fpr3 protein expression.
View Article and Find Full Text PDFBackground: The hormonal state during the estrus cycle or pregnancy produces alterations on female olfactory perception that are accompanied by specific maternal behaviors, but it is unclear how sex hormones act on the olfactory system to enable these sensory changes.
Results: Herein, we show that the production of neuronal progenitors is stimulated in the vomeronasal organ (VNO) epithelium of female mice during a late phase of pregnancy. Using a wide range of molecular markers that cover the whole VNO cell maturation process in combination with Ca(2+) imaging in early postmitotic neurons, we show that newly generated VNO cells adopt morphological and functional properties of mature sensory neurons.
Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system.
View Article and Find Full Text PDF